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1/3/37. A magical wizard has given you a formidable challenge. Below is a section of a 4−6−12
tiling of the plane. You must place a positive integer in each square, hexagon, and dodecagon
such that:

• The only integer that is repeated is 1.

• The value in each dodecagon is the product of the values in the squares connected to
it.

• The value in each hexagon is the least common multiple of the values in the three
squares connected to it.

• U + S + A+M + T + S = 57.

There is a unique solution, but you do not need to prove that your answer is the only
one possible. You merely need to find an answer that satisfies the conditions of the problem.
(Note: In any other USAMTS problem, you need to provide a full proof. Only in this
problem is an answer without justification acceptable.)
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Solution

The following is the unique solution:
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2/3/37. The game of summing solitaire is played as follows. A deck of 101 cards (numbered
1 through 101) is randomly shuffled. The cards are drawn one at a time. As each card is
drawn, it is put into the scoring pile if its number is larger than the numbers on all other
cards that have been drawn so far, and otherwise it is discarded. (The first card drawn is
placed in the scoring pile.) After drawing all 101 cards, the final score is the sum of all the
numbers on the cards in the scoring pile.

What is the probability that the final score is even?

Solution 1:

Instead of 101, suppose there were n cards in the deck. Let an denote the probability
that the final score is even.

Consider a variant of the game wherein as each card is drawn, it is placed into the scoring
pile if it is the smallest card drawn so far. Call this variant the smallest variant, and call the
variant in the original question the original variant. For the smallest variant of the game,
let bn denote the probability that the final score is even.

Note that if n is odd, then an = bn. Indeed, let Dn denote a deck with n cards in some
order. Let S(Dn) denote the final score obtained by playing the original variant of the game
with the deck Dn, and let S ′(Dn) denote the final score obtained by playing the smallest
variant of the game. Let D′

n denote the deck obtained by replacing card i in Dn with card
n+1− i. Then if n is odd, we see that parity of the cards in Dn are exactly the same as the
parity of the cards in D′

n, in order. Also, card i in Dn will be placed into the scoring pile in
the original variant if and only if card n+ 1− i in D′

n is placed into the scoring pile in the
smallest variant. We conclude that S(Dn) has the same parity as S ′(D′

n). Since replacing i
with n+1− i in a deck gives a bijection from the set of decks to itself, we conclude that the
probability that S(Dn) is even is the same as the probability that S ′(Dn) is even. In other
words, an = bn.

We continue by analyzing the smallest variant, since 101 is odd. We claim the following
expressions for bn hold for all n:

bn =


n−2
2n−2

, n even

n−1
2n

, n odd

We prove these formulas by induction on n. Note that b1 = b2 = 0, which serve as base cases.

For the induction step, suppose the formulas hold up through n − 1. Note that if n is
even, then bn = bn−1, which proves the formula. This is because card n does not affect the
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parity of the final score. Next, note that if n is odd, then

bn =
1

n
(1− bn−1) +

n− 1

n
· bn−1

because card n is scored if and only if it is the first card drawn (with probability 1
n
), and

otherwise it is not scored.

By the induction hypothesis, for n odd, we have

bn =
1

n
(1− bn−1) +

n− 1

n
bn−1

=
1

n
· n− 1

2n− 4
+

n− 1

n
· n− 3

2n− 4

=
n− 1

2n

which proves the formula for bn. We conclude that the answer is 100
202

=
50

101
.
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Solution 2:

We generalize to a deck with cards labelled 1, 2, . . . , n.

First, we claim that the probability that the card labelled k is put into the scoring deck
is 1

n−k+1
.

To see this, consider the positions of the n− k + 1 cards labelled k, k + 1, . . . , n. Then
the card labelled k is put into the scoring deck if and only if k is the first card among all
n− k + 1 positions. The probability that this occurs is 1

n−k+1
.

Now, we want to compute the probability that the sum of all the labels in the scoring
deck is even. The cards with even labels have no effect on the parity of the sum, so we can
ignore them, leaving the cards with odd labels.

Let ps be the resulting probability that the sum of the labels is s. Suppose that n is odd.
Then the generating function for ps is

p(x) = p0 + p1x+ p2x
2 + p3x

3 + · · ·

=

(
n− 1

n
+

1

n
x

)(
n− 3

n− 2
+

1

n− 2
x3

)(
n− 5

n− 4
+

1

n− 4
x5

)
· · ·

(
2

3
+

1

3
xn−2

)
xn.

Then
p0 + p1 + p2 + p3 + · · · = p(1) = 1

and

p0 − p1 + p2 − p3 + · · · = p(−1)

=

(
n− 1

n
− 1

n

)(
n− 3

n− 2
− 1

n− 2

)(
n− 5

n− 4
− 1

n− 4

)
· · ·

(
2

3
− 1

3

)
(−1)

=
n− 2

n
· n− 4

n− 2
· n− 6

n− 4
· · · 1

3
· (−1)

= − 1

n
.

Therefore, the probability that the sum of the labels is even is

p0 + p2 + · · · = 1− 1
n

2
=

n− 1

2n
.

So for n = 101 we get
100

202
=

50

101
.
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3/3/37. Prove that for any positive integer m, there exists a set S of 2m consecutive positive
integers with the following property: for all nonnegative integers k, n, if S contains one of
{3k(3n+ 1), 3k(3n+ 2)}, then it also contains the other.

Solution

Let [a, b] denote the set of consecutive positive integers between a and b inclusive. Call
such a set good if there is no pair {3k(3n+ 1), 3k(3n+ 2)} for which it contains exactly one
element.

Lemma: [1, 2a] is good if a has no 2s in its base 3 representation.

We go by strong induction on a. The base case a = 1 is trivial. Now take some a > 1
while assuming the hypothesis is true for all smaller a.

Case 1: a ≡ 1 (mod 3). Then [1, 2a] ends in the pair {2a− 1, 2a}. This means [1, 2a] is
good if and only if [1, 2a− 2] is good. When a in base 3 ends in 1, a− 1 has no 2s in its base
3 representation if and only if a does, so the induction holds in this case.

Case 2: a ≡ 2 (mod 3). Then a has a 2 in its base 3 representation, so there is nothing
to prove.

Case 3: a ≡ 0 (mod 3). Partition [1, 2a] into triples (3k−2, 3k−1, 3k) for 1 ≤ k ≤ 2a/3.
In each triple, {3k − 2, 3k − 1} form a pair, and 3k can be mapped to k in the set [1, 2a/3].
This means [1, 2a] is good if and only if [1, 2a/3] is. Likewise, a has no 2s in its base 3
representation if and only if a/3 has none, so the induction hypothesis holds.

This completes the induction, and the lemma is proved. ■

Corollary: [2a+ 1, 2b] is good if both a and b have no 2s in their base 3 representation.

Proof: [1, 2a] and [1, 2b] are both good by the lemma, and their set difference is [2a+1, 2b].
The set difference is also good since taking away the elements of a good set will not leave
any pair half-filled. ■

Let S be the set of positive integers whose base 3 representation has no 2s. The corollary
reduces the problem to showing that for any positive integer m, we can find a, b ∈ S with
b− a = m. This is well-known and amounts to showing balanced ternary (base 3 with digits
−1, 0, 1) can represent all integers, but we present a proof of this here.
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For k a nonnegative integer, let Tk be the set of the 3k integers x with

−3k − 1

2
≤ x ≤ 3k − 1

2
.

We show by strong induction on k that if a, b ∈ S with 0 ≤ a, b < 3k, then b − a can take
any value of Tk. For the base case k = 0, Tk = {0}, and b− a = 0 when a = b = 0.

Now assume it is true for k, and consider a, b ∈ S with 0 ≤ a, b < 3k+1. We can write
a as a′ or a′ + 3k for a′ ∈ S and 0 ≤ a′ < 3k, and we can do the same for b and b′. Since
0 ≤ a′, b′ < 3k, the induction hypothesis says b′ − a′ can be any integer in Tk. Then b − a
can be any integer in Tk, any integer in Tk plus 3k, and any integer in Tk minus 3k. But this
is the same as saying b− a can be any integer in Tk+1, so the induction is complete.
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4/3/37. Let O be the circumcenter of triangle ABC, and let H be the orthocenter. Let OA be
the circumcenter of triangle BOC, and define OB, OC similarly. Let HA be the circumcenter
of triangle OOBOC , and define HB, HC similarly. Prove that AHA, BHB, CHC , and HO
are concurrent.

Solution

Note that HAHB is perpendicular to OOC .

Since OA = OB and OCA = OCB, the perpendicular bisector of AB is OOC . Hence,
AB is parallel to HAHB.

A

B
C

HA

HB HC

O

OA

OB

OC

Likewise, AC is parallel to HAHC , and BC is parallel to HBHC , so triangles ABC and
HAHBHC are homothetic. That means AHA, BHB, and CHC concur at the center of ho-
mothety.

We have that

∠AOOB =
1

2
∠AOC = B,

so ∠OAOB = B. Then ∠AOBO = 180◦ − 2B.

Since AOBOOC is a kite,

∠OCOBO =
1

2
∠AOBO = 90◦ −B.

Then ∠OCHAO = 2∠OCOBO, and

∠HBHAO =
1

2
∠OCHAO = 90◦ −B.

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 3 Solutions

Year 37 — Academic Year 2025–2026
www.usamts.org

That means HAO is perpendicular to HBHC .

A

B
C

H

HA

HB HC

O

OA

OB

OC

Similarly, HBO is perpendicular to HAHC . Hence, O is the orthocenter of triangle
HAHBHC .

Then H and O are corresponding points in triangles ABC and HAHBHC , so HO also
passes through the center of homothety.
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5/3/37. Let N > 1 be an integer, and suppose that N =
∏n

i=1 p
ei
i is the factorization of N into

distinct prime factors p1, p2, . . . , pn. Assume that p1 > p2 > · · · > pn and define

A(N) =

∑n
i=1 ei · pi∑n

i=1 ei
.

Further define

B(N) = p1 −
1

p1 − 1
p1− 1

...− 1

p2−
1

...− 1
pn

,

where p1 occurs e1 times in the continued fraction, p2 occurs e2 times, and so on. For
example,

B(33 · 52) = 5− 1

5− 1

3− 1

3− 1

3

Find all positive integers N so that A(N) = B(N).

Solution

We claim that A(N) = B(N) if and only if either N is prime or N = 2m · 3 for an integer
m ≥ 0. If N = p is prime, then A(N) = B(N) = p by definition. To show that numbers
of the form 2m ·3 for positive integersm ≥ 1 have the desired property, we first need a lemma.

Lemma 1: If m ≥ 1, then B(2m) =
m+ 1

m
.

Proof. We prove this by induction on m. For the base case m = 1, we have B(2) = 2 =
2

1
,

hence the two expressions are equal. Suppose that we have proven the claim for all 0 < ℓ ≤ m

for some positive integerm. That is, B(2ℓ) =
ℓ+ 1

ℓ
. If B(2m+1) = k for some rational number

k, then
1

2− k
= B(2m). Since B(2m) =

m+ 1

m
by the inductive hypothesis, we find that

2− k =
m

m+ 1
, or

k = 2− m

m+ 1
=

m+ 2

m+ 1
.

This completes the inductive step, hence the lemma is proven. ■
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If N = 2m · 3 for any integer m ≥ 1, then B(N) = 3− 1

B(2m)
. By Lemma 1 we then have

B(2m · 3) = 3− m

m+ 1
=

2m+ 3

m+ 1
.

Since we also have A(2m · 3) = 2m+ 3

m+ 1
by definition, we have proven that A(N) = B(N)

whenever N = 2m · 3 for an integer m ≥ 1.

Next we prove the converse, that is if A(N) = B(N) then either N is prime or N = 2m ·3
for some positive integer m. Suppose N is not prime and write N =

∏n
i=1 p

ei
i , where the pi

are distinct prime factors and n ≥ 2. Assume WLOG that p1 is the largest prime and p2 is
the second-largest prime distinct from p1. In general, the constructions of A(N) and B(N)
make sense for arbitrary ordered finite sequences of integers x = (x1, x2, · · ·xn).

Lemma 2. Suppose B(x) = N(x)
D(x)

with gcd(N(x), D(x)) = 1, then

• N(x) ≥ D(x) + 1, with equality if and only if x1 = x2 = · · · = xn = 2;

• D(x) ≥ n, with equality if and only if x2 = x3 = · · · = xn = 2.

Proof. We will prove this by induction on the length of a decending list of primes

x = (x1, x2, · · · , xn). Our base case is B((x1)) = x1 =
x1

1
. Then N((x1)) = x1 ≥ 2 and

D(x) = 1, so N((x1)) ≥ D((x1)) + 1. Moreover, N((x1)) = 2 if and only if x1 = 2. The
statement about D(x) is vacuously true. Now suppose the statement in the lemma is true
for all descending lists of primes of length m < n for some n ≥ 2, and let x = (x1, x2, · · · , xn)
be a list of length n. By definition of B(x), we have

B(x1, x2, . . . , xn) = x1 −
1

B(x2, . . . , xn)
.

Let x′ = (x2, x3, · · · , xn) and write B(x′) as a fraction
N(x′)

D(x′)
in lowest terms. By the

inductive hypothesis, we know that:

• N(x′) ≥ D(x′) + 1, with equality if and only if x2 = x3 = · · · = xn = 2 (note the
respect of the indices in x′).

• D(x′) ≥ n− 1, with equality if and only if x3 = x4 = · · · = xn = 2.

Suppose we write B(x) as a fraction
N(x)

D(x)
in lowest terms. We have
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N(x)

D(x)
= x1 −

1

B(x2, . . . , xn)

≥ x1 −
n− 1

n

since D(x′) ≥ n − 1 and N(x′) ≥ D(xx′) + 1 ≥ n. Since we also know that x1 ≥ 2, we
deduce that

N(x) ≥ D(x)

(
x1 − (1− 1

n
)

)
≥ D(x)

(
2− (1− 1

n
)

)
= D(x) +

D(x)

n
.

Hence if we can show that D(x) ≥ n, then we get N(x) ≥ D(x)+1 as well. Towards that

end, starting at B(x) = x1 −
D(x′)

N(x′)
, note that the smallest N(x′) can be is n, which occurs

if and only if x2 = x3 = · · · = xn = 2. In general, since N(x′) ≥ D(x′) + 1, the fraction

N(x)

D(x)
= x1 −

D(x′)

N(x′)
=

N(x′)x1 −D(x′)

N(x′)

cannot be reduced further, so D(x) ≥ N(x′) ≥ n. Thus we have proven D(x) ≥ n and
N(x) ≥ D(x) + 1. Moreover, using the inductive hypothesis again, it’s apparent that these
inequalities for D(x) and N(x) are equalities if and only if x2 = x3 = · · · = x1 = 2 and
x1 = x2 = · · · = xn = 2, respectively. This completes the inductive step. ■

Now we can prove the original claim that A(N) = B(N) if and only if N is prime or
N = 2m · 3 for any m ≥ 1. Indeed if N =

∏n
i=1 p

ei
i , then the denominator of A(N) is at most

n when written as a fraction in lowest terms. On the other hand, the lemma shows us the
denominator of B(N) is at least n when written as a fraction in lowest terms, with equality
if and only if n = 2, e1 = 1, and p2 = 2. Let m = e2 so the N = p1 · 2m. Then we have

A(N) =
p1 + 2m

m+ 1
,

and from Lemma 1 we can compute

B(N) = p1 −
1

B(2m)
= p1 −

m

m+ 1
=

(m+ 1)p1 −m

m+ 1
.

Thus we have p1 + 2m = (m + 1)p1 −m, or 3m = p1m. If follows that p1 = 3, and the
proof is complete. ■
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