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1/1/37. Place a nonzero digit into some of the white cells of the grid. Shaded cells must remain
blank. No digit can repeat in a row or column. In each row, the sum of the digits must be
equal to some fixed value R (which you find during the solution). Similarly, in each column,
the sum of the digits must be equal to some fixed value C. Circles in the grid give all the
digits in the cells that touch the circle. (Including repeats; if two cells touching a circle
have the same digit, the circle must contain that digit twice.) Some of the digits you place
may not be adjacent to one of the circles, but every digit in the circles must be used in an
adjacent white cell.

There is a unique solution, but you do not need to prove that your answer is the only
one possible. You merely need to find an answer that satisfies the conditions of the problem.
(Note: In any other USAMTS problem, you need to provide a full proof. Only in this
problem is an answer without justification acceptable.)
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2/1/37. When Nia was learning about decimals, her teacher asked her to add two terminat-
ing decimals with a positive integer part. Then, Nia’s teacher asked her to multiply those
same two decimals. To Nia’s surprise, the (correct) result of both computations was the same!

Both of the two numbers Nia’s teacher gave her were non-whole positive numbers. When
written as decimals without trailing zeroes, both of these numbers also had the same number
of digits after the decimal point, and did not contain the digit 0. Find all possible pairs of
numbers Nia’s teacher could have given her.

Solution

Suppose the two numbers Nia’s teacher gave her are x and y. Since x and y have the
same number of digits after the decimal point, we know there is a positive integer k such
that 10k · x and 10k · y are both integers.

Suppose that a = 10k · x and b = 10k · y. We know that x + y = xy, so it follows that
a

10k
+

b

10k
=

ab

102k
. Simon’s Favorite Factoring Trick then tells us that

(a− 10k)(b− 10k) = 102k.

If either a − 10k or b − 10k are negative, both quantities must be negative, which would
imply that both x and y are negative, a contradiction. So both quantities are positive; hence
a > 10k and b > 10k, so x > 1 and y > 1. This means that a and b have a zero digit if
and only if x and y do; hence neither a nor b contains a 0 in their decimal representations.
In particular, this tells us that neither a nor b is a multiple of 10, so WLOG we must have
a− 10k = 22k and b− 10k = 52k. This means that

x =
10k + 22k

10k
= 1 +

(
2

5

)k

,

y =
10k + 52k

10k
= 1 +

(
5

2

)k

.

If k = 1, this gives us the solution (1.4, 3.5) . If k = 2, this gives us the solution

(1.16, 7.25) . Both of these work since

1.4 + 3.5 = 4.9 = 1.4 · 3.5,
1.16 + 7.25 = 8.41 = 1.16 · 7.25.

On the other hand, when k ≥ 3, we find that x = 1 +

(
2

5

)k

satisfies 1 < x < 1.1, so all

these values of x have a 0 in the tenths place. So these are the only solutions.
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3/1/37. Let (a, b) be a pair of rational numbers. Every minute, we are allowed to modify the
pair in one of the following ways:

i. Replace (a, b) with (a+ 1, b+ 1)

ii. If a ̸= 0 and b ̸= 0, replace (a, b) with
(
1
a
, 1
b

)
iii. Replace a with −a

iv. Replace b with −b

(a) Suppose we start with the pair (0, 0) . Is it possible to modify this pair to eventually
equal

(
2025, 1

2025

)
?

(b) Suppose we start with the pair (0, 1). Is it possible to modify this pair to eventually
equal

(
2025, 1

2025

)
?

Solution

(a) Yes, it is possible. We start with a lemma.

Lemma. If (a, b) is attainable, then (a, b+ 2) and (a+ 2, b) are attainable.

Proof. Start with the pair (a, b). Then perform modifications (i), (iii), (i), (iii) as follows:

(a, b)
(i)−→ (a+ 1, b+ 1)

(iii)−−→ (−a− 1, b+ 1)
(i)−→ (−a, b+ 2)

(iii)−−→ (a, b+ 2).

Similarly, we can perform modifications (i), (iv), (i), (iv) in that order to obtain (a+2, b).

We proceed by first applying modification (i) to obtain (1, 1), and then applying the
lemma 1012 times to obtain (1, 2025).

Next, we apply modification (ii) to obtain
(
1, 1

2025

)
. We then apply the lemma another

1012 times to obtain
(
2025, 1

2025

)
.

(b) No, it is not possible. For a given pair
(

a1
a2
, b1
b2

)
, we consider the parity of the value

|a1b2 − a2b1| (where we assume that (a1, a2) are not both even, and (b1, b2) are not both
even). We claim that this parity is unchanged by all the given operations. We can check
this one at a time as follows:

1. Starting with
(

a1
a2

+ 1, b1
b2
+ 1

)
=

(
a1+a2
a2

, b1+b2
b2

)
, we have

|b2(a1 + a2)− a2(b1 + b2)| = |a1b2 − b1a2|.

So in this case, the value itself is unchanged.
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2. Given the pair of reciprocals
(

a2
a1
, b2
b1

)
, we have

|a2b1 − a1b2| = |a1b2 − a2b1|.

So the value is unchanged again in this case.

3. For the pair
(

−a1
a2

, b1
b2

)
, we have

| − a1b2 − a2b1| = |a1b2 − a2b1 − 2a1b2|,

which has the same parity as |a1b2 − a2b1|. Note that this parity is also the same if we
negate a2 instead of a1.

4. Similarly, for the pair
(

a1
a2
, −b1

b2

)
, we have

|a1b2 + a2b1| = |a1b2 − a2b1 + 2a2b1|,

where the parity is again unchanged.

To conclude, note that |0 · 1− 1 · 1| = 1 is odd, whereas |2025 · 2025− 1 · 1| is even. So it is
impossible to modify (0, 1) into

(
2025, 1

2025

)
.
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4/1/37. Let S be a finite set of points in the plane such that no three points in S are collinear.
Suppose that there are two triangles whose vertices are six distinct points in S, such that
their intersection is a hexagon with no points of S in its interior or on its boundary. Prove
that there is a convex hexagon with vertices in S that has no points of S in its interior.

Solution

First we prove a lemma.

Lemma. If the intersection of triangles ABC and DEF is a hexagon with no points of
S in its interior, then {A,B,C,D,E, F} are the vertices of a convex hexagon: in particular,
the vertices of triangles ABC and the vertices of DEF can each be permuted such that
AFBDCE is a convex hexagon.

Proof. The sides of the polygon formed by the intersection of triangles ABC and DEF are
subsegments of the sides of triangles ABC and DEF , but since there are only six sides
among triangles ABC and DEF , all of the sides among triangles ABC and DEF are used.
Therefore, each side of ABC is intersected by two sides of DEF , and vice versa.

Permute the vertices of triangles ABC and DEF so that each pair of sides (AB,DF ),
(AB,FE), (BC,DE), (BC,FD), (CA,DE), and (CA,EF ) intersect.

A

B

C

D

E

F

Since segment AB intersects DF and FE, F and {D,E} are on opposite sides of line
AB. If C and F were on the same side as line AB, then C and {D,E} would be on opposite
sides of line AB, so segments AC and DE would not intersect, which is a contradiction.
Therefore, F and C are on opposite sides of line AB, so triangles AFB and ABC do not
intersect.

By a similar argument, E and B are on opposite sides of line AC, so triangles AEC and
ABC do not intersect. Since F and {C,E} are on opposite sides of line AB, triangles AFB
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and AEC do not intersect. Therefore, triangles AFB, ABC, and AEC do not intersect.

Similarly, we can prove that triangle BDC does not intersect the triangles AFB, ABC,
or AEC, so the triangles AFB, AEC, BDC, and ABC do not intersect. We conclude that
hexagon AFBDCE is non-self-intersecting.

Then, since AFBD, FBDC, BDCE, DCEA, CEAF , and EAFB are convex quadri-
laterals, each angle of the non-self-intersecting polygon AFBDCE is convex, so AFBDCE
is a convex hexagon, as desired.

Now consider all 6-tuples (A,B,C,D,E, F ) of points in S such that the intersection of
triangles ABC and DEF is a hexagon with no points of S in its interior, and AFBDCE is a
convex hexagon. By the given information and the previous lemma, there exists at least one
such tuple. Select a tuple (A,B,C,D,E, F ) which minimizes the size of set T , the points of
S in the interior of hexagon AFBDCE. We will show that T = ∅, which would demonstrate
that AFBDCE has no points of S in its interior.

First, observe that each point of S is either in the interior or exterior of any polygon
with points in S due to the non-collinearity condition. If AFB contains some point X ∈ S
in its interior, then the set of points of S in the polygon AXBDCE is a strict subset of T
since AXBDCE is inside AFBDCE and X is not in the interior of AXBDCE, but this
contradicts the minimality of the size of the set T . By similar logic, the triangles BDC,
CEA, DCE, EAF , and FBD also do not contain any points of S in their interiors.

Since AFBDCE is composed of triangles AFB, BDC, CEA, and ABC, each point in T
is in the interior of ABC. Similarly, since AFBDCE is composed of triangles DCE, EAF ,
FBD, and DEF , each point in T is in the interior of DEF . Therefore, each point in T is
in the interior of the intersection of ABC and DEF . However, since there are no points in
the interior of the intersection of ABC and DEF , T = ∅, as desired.
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5/1/37. Let n be a positive integer. Call a coloring of a rectangular grid k-good if

• Each cell of the grid is colored with one of n colors,

• There are the same number of cells of each color, and

• Every row and column has at least k cells of the same color. (The color with at least
k cells can vary across rows and columns, e.g., if two of the colors are red and blue,
then it’s possible for the first row to have at least k red cells, while the second row has
at least k blue cells.)

For all n, find the largest positive integer k (which may or may not depend on n) such that
there exists a k-good coloring of an n2 × n2 grid.

Solution

Answer: k =
n(n+ 1)

2
.

Construction: Given any n, we will first show that there is a k-good coloring of an n2×n2

grid with k =
n(n+ 1)

2
. Number the colors from 1 through n, and divide the n2 × n2 grid

into n2 non-overlapping n × n subgrids. We will call these subgrids n-blocks for clarity. In
particular, our n2 × n2 grid is built from n2 non-overlapping n-blocks, and in the rest of the
construction we may view the original grid as also a n×n grid made up of the n-blocks. We
will use capital indices I and J to indicate the position of each n-block, e.g. the n-blocks
along the diagonal are at positions (I, J) = (1, 1), (2, 2), . . . , (n, n). In general, we refer to
these positions as block-rows and block-columns to distinguish it from the original n2 × n2

grid of rows and columns. Let a1, . . . , an be symbols. For each n-block, place the symbols in
the cells of the n-block so that all n symbols appear in each row and column of the n-block.
For example, with n = 3, the symbols are a1, a2, and a3, and an n-block could look like:

a1 a2 a3
a2 a3 a1
a3 a1 a2

We will use this auxiliary coloring of the n-blocks to guide our construction of a
n(n+ 1)

2
-

good coloring. (Note: these auxiliary colorings of the n-blocks are Latin Squares.) With
reference to the n × n grid of n-blocks, for each 1 ≤ I ≤ n, color the n-block in the I th

block-row and block-column entirely with color I. So the n-blocks along the diagonal are
each a different color. Then for all 1 ≤ J ≤ n− 1, consider the two n-blocks located in the
I th block-row and (I + J)th block-column and the (I + J)th block-row and I th block-column
(considering indices cyclically). For each of these two n-blocks, take all the cells with n− J
distinct auxiliary symbols and color them with color I, in such a way that doesn’t overlap

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 1 Solutions

Year 37 — Academic Year 2025–2026
www.usamts.org

with other cells that we’ve already colored. For example, if n = 3 and I = J = 1, this
construction says color the 3-block in the top-left corner of the block-grid entirely with color
1. Then in the 3-blocks located at block-indices (1, 2) and (2, 1), first pick 3 − 1 = 2 of the
symbols a1, a2, a3, and then color all of the cells with those symbols using color 1. Here’s
what this coloring looks like for n = 3, where our three colors are red, blue, and yellow in
that order:

We can verify this does result in a valid coloring of the grid. Note that the cells within
each n-block are only colored with two colors, which correspond to the block-row and block-
column that the n-block is located in. Then, if an n-block is located in block-row I or

block-column I with respect to the block-grid, a total of n + (n − 1) + · · · + 1 =
n(n+ 1)

2
cells in each row and column of the main grid overlapping with that n-block are colored with

color I, so this is an
n(n+ 1)

2
-good coloring of an n2 × n2 grid.

Bound: Take a k-good coloring of an n2 × n2 grid, and suppose one of the n colors
used in this coloring is red. For any color c, call a row or column in this grid a c-line if
at least k cells in that row or column are colored c. By hypothesis, every row and column
is a c-line for some color c. But since there are n colors, n2 rows, and n2 columns, the Pi-
geonhole Principle implies there is some color c such such at least 2n rows and columns are
c-lines. We can suppose without loss of generality that there are at least 2n red-lines. So
if r is the number of red rows and c is the number of red columns in this grid, then r+c ≥ 2n.

Now, since each red row and column has at least k red cells, there are at most r(n2 − k)
non-red cells in the red rows of our grid, and at most c(n2 − k) non-red cells in the red
columns of our grid. If a non-red cell is not in a red row or column of our grid, it must
lie in the intersection of the (n2 − r) non-red rows of our grid and the (n2 − c) non-red
columns of our grid. This means that the number of non-red cells in our grid is at most
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(n2 − k)(r + c) + (n2 − r)(n2 − c). Since there are exactly n4 − n3 non-red cells in our grid,
it follows that

n4 − n3 ≤ (r + c)(n2 − k) + (n2 − r)(n2 − c).

Simplifying, this gives us (r+c)k−n3 ≤ rc. By AM-GM, we know that
(r + c)2

4
≥ rc, which

gives us
(r + c)2 − 4k(r + c) + 4n3 ≥ 0.

Completing the square, this gives us

((r + c)− 2k)2 ≥ 4k2 − 4n3.

Since r + c ≥ 2n, we know that 2k − 2n ≥ 2k − (r + c), so

(2k − 2n)2 = (2n− 2k)2 ≥ ((r + c)− 2k)2.

Hence, we get
(2k − 2n)2 ≥ 4k2 − 4n3,

which simplifies to k ≤ n(n+ 1)

2
.
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