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1/3/36. Shade some squares in the grid so that:

1. Squares with numbers are unshaded.

2. Each number is equal to the product of the number of unshaded squares it can “see”
in its row and column. (A square can see another square if they’re in the same row or
column and the sight line between them doesn’t have any shaded squares. Each square
can see itself.)

3. The shaded squares must make one connected group. Two squares are considered to
be connected if they share an edge.
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The following is an example of a completed puzzle to clarify the rules.
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There is a unique solution, but you do not need to prove that your answer is the only
one possible. You merely need to find an answer that satisfies the conditions of the prob-
lem. (Note: In any other USAMTS problem, you need to provide a full proof. Only in this
problem is an answer without justification acceptable.)
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Solution
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2/3/36. Calamitous Clod deceives the math beasts by changing a clock at Beast Academy.
First, he removes both the minute and hour hands, then places each of them back in a ran-
dom position, chosen uniformly along the circle.

Professor Grok notices that the clock is not displaying a valid time. That is, the hour
and minute hands are pointing in an orientation that a real clock would never display. One
such example is the hour hand pointed at 6 and the minute hand pointed at 3.
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The math beasts can fix this, though. They can turn both hands by the same number of
degrees clockwise. On average, what is the minimal number of degrees they must turn the
hands so that they display a valid time?*

*Assume that after Calamitous Clod replaces the hands, they don’t move again until the
math beasts adjust their position.

Solution

Consider the set of pairs of angles (m,h), 0◦ ≤ m,h < 360◦. Each pair corresponds to a
clock position (possibly invalid), where m and h determine the number of degrees clockwise
from pointing at 12. For example, (180◦, 195◦) would be the pair corresponding to 6:30. Let
S be the set of pairs that show a valid clock position.

Let the angle between the hands after Calamitous Clod replaces them be θ. Notice that,
relative to the hour hand, the minute hand travels at a speed of 6◦ − 1

2

◦
= 11

2

◦
/min. Thus,

it always takes
360◦

11
2

◦
/min

=
720

11
min

before the minute and hour hands have the same angle between them. In other words, if
(m1, h1) and (m2, h2) correspond to times 720

11
minutes apart, then |m1 − h1| = |m2 − h2|.

The display of an analog clock repeats every 12 hours. Thus, it suffices to consider a
720-minute period. Since the angle between hands repeats every 720

11
minutes, this implies

that for any 0◦ ≤ θ ≤ 180◦, there are exactly 11 pairs in S whose angles have a difference of
θ. Furthermore, the values for the minute hand in those 11 pairs are equally spaced, since
between pairs it travels

720

11
· 6◦ = 4320◦

11
.
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After subtracting 360◦, we get 360◦

11
. Thus, the 11 values for m are equally spaced along the

interval [0◦, 360◦).

Since the angle is fixed once Calamitous Clod sets the hands, it is sufficient to consider
the position of the minute hand. There are exactly 11 valid positions for the minute hand,
which are equally spaced along the circle. Thus, the minute hand always lands in an interval
between two valid positions. This is equivalent to uniformly selecting a random angle α on
the interval [0◦, 360

◦

11
). The minimal number of degrees the math beasts must turn the hands

is
360◦

11
− α,

whose expected value is
180◦

11
.
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3/3/36. Let a, b be positive integers such that a2 ≥ b. Let

x =

√
a+

√
b−

√
a−

√
b.

(a) Prove that for all integers a ≥ 2, there exists a positive integer b such that x is also
a positive integer.

(b) Prove that for all sufficiently large a, there are at least two b such that x is a positive
integer.

Note: We’ve received some questions about what is meant by “for all sufficiently large
a.” To give a simple example of this phrasing, it is true that for all sufficiently large positive
integers n, we have n2 ≥ 100. Specifically, this is true for all n ≥ 10.

Solution

(a) Let a ≥ 2 and assume x is a positive integer. The latter is true if and only if x2 is a
perfect square. We have

x2 =

(√
a+

√
b

)2

+

(√
a−

√
b

)2

− 2

(√
a+

√
b

)(√
a−

√
b

)
,

which simplifies to
x2 = 2a− 2

√
a2 − b.

Certainly x2 is an integer, so a2 − b is a perfect square. That is, there exists a nonnegative
integer k such that k2 = a2 − b. Then we can rewrite

x2 = 2(a− k).

Moreover, x2 is an even perfect square. That is, there exists some positive integer ℓ such
that x2 = (2ℓ)2 = 4ℓ2. Then a− k = 2ℓ2, so that k = a− 2ℓ2 and a+ k = 2a− 2ℓ2.

The existence of k and ℓ therefore guarantees the existence of

b = a2 − k2 = 2ℓ2
(
2a− 2ℓ2

)
= 4ℓ2(a− ℓ2).

This is an integer, and if we let ℓ = 1, then b is indeed positive if a ≥ 2.

To check, let ℓ = 1. Then b = 4(a− 1), and so

x2 = 2a− 2
√
a2 − 4a+ 4 = 2a− 2

√
(a− 2)2 = 2a− 2(a− 2) = 4.
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(b) We proved in the preceding part that the example b = 4(a − 1), i.e., setting ℓ = 1,
will work for all a ≥ 2. Now consider ℓ = 2, which gives b = 16(a− 4) and

x2 = 2a− 2
√
a2 − 16a+ 64 = 2a− 2(a− 8) = 16.

Thus x = 4, independently of the value of a, for a ≥ 8.
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4/3/36. ABCD is a convex quadrilateral where ∠A = 45◦ and ∠C = 135◦. P is a point strictly
inside △ABC such that ∠BAP = ∠CAD and ∠BCP = ∠ACD. Prove that PB ⊥ PD if
and only if AC ⊥ BD.

Solution

A

B
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A′

Let ω be the circumcircle of ABCD. Let C ′ be the other intersection of ω with line AP ,
and let A′ be the other intersection of ω with line CP . Connect AA′ and CC ′.

Since ∠BAP = ∠CAD, we have
⌢

BC ′ =
⌢

CD. Similarly, since ∠BCP = ∠ACD, we have
⌢

BA′ =
⌢

AD. This means that our three segments are parallel: A′A ∥ BD ∥ C ′C. Thus by
symmetry since P is the intersection of A′C and AC ′, we have PB = PD.

Thus, PB ⊥ PD if and only if P is the center of ω. This happens if and only if A′C
and AC ′ are diameters of ω, which is equivalent to AC ⊥ A′A and AC ⊥ C ′C, and since we
showed above these are parallel to BD, this happens if and only if AC ⊥ BD as desired.
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5/3/36. Find all ordered triples of nonnegative integers (a, b, c) satisfying 2a · 5b − 3c = 1.

Solution

The only ordered triples satisfying the given equation are (a, b, c) = (1, 0, 0), (2, 0, 1), (1, 1, 2).
These clearly work.

If a = 0, then 5b and 3c are both odd, so the LHS is even while the RHS is odd, contra-
diction. Hence a > 0.

If c = 0, then 2a · 5b = 2, giving the solution (a, b, c) = (1, 0, 0). Henceforth assume c > 0.

If a ≥ 3, taking the equation modulo 8 gives us −3c ≡ 1 (mod 8). The quantity 3c can
only be congruent to 1 or 3 (mod 8), so we get a contradiction. Hence a = 1 or a = 2.

Suppose a = 2, so that our equation reads 4 · 5b − 3c = 1. If b = 0, then we must have
c = 1, giving us the solution (a, b, c) = (2, 0, 1). Henceforth assume that b > 0. Taking the
equation modulo 4 gives us −3c ≡ 1 (mod 4), so c must be odd. But taking the equation
modulo 5 gives −3c ≡ 1 (mod 5), so 3c ≡ 4 (mod 5) and hence c ≡ 2 (mod 4). This implies
c is even, a contradiction, so there are no other solutions in this case.

Hence suppose a = 1, so that our equation reads 2 · 5b − 3c = 1. Taking b = 0 gives
us (a, b, c) = (1, 0, 0) again, so suppose b > 0. Then taking our equation modulo 3 gives us
5b+1 ≡ 1 (mod 3), so b+1 must be even and hence b must be odd. Therefore, let b = 2d+1.
Taking our equation modulo 5 then gives us −3c ≡ 1 (mod 5), so c ≡ 2 (mod 4). Therefore,
let c = 4e+ 2. Now our equation reads

2 · 52d+1 − 34e+2 = 1,

or 10 · 52d − 9 · 34e = 1. Taking the equation modulo 9 gives us 6 | 2d, so 3 | d; hence let
d = 3f, so our equation reads

10 · 56f − 9 · 34e = 1.

Taking the equation modulo 7 gives us 6 | 2e, so 3 | e; hence let e = 3g, so our equation
reads

10 · 56f − 9 · 312g = 1.

Taking the equation modulo 13 gives us 12 | 6f, so 2 | f ; hence let f = 2h, so our equation
reads

10 · 512h − 9 · 312g = 1.

Now we prove a claim:
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Claim: For all positive integers k, we have 53·2
k ≡ 33·2

k ≡ 2k+2 + 1 (mod 2k+3).

Proof: By induction. The base case k = 1 is trivial. Now suppose the claim is true for
k − 1 ≥ 1, so that

53·2
k−1 ≡ 2k+1 + 1 (mod 2k+2).

This means that for some constant C, we have

53·2
k−1

= C · 2k+2 + 2k+1 + 1.

Squaring both sides gives us

53·2
k

= (C2 + C) · 22k+4 + C · 2k+3 + 22k+2 + 2k+2 + 1.

Since k > 1 we know 2k + 4 > 2k + 2 > k + 3, so reducing modulo 2k+3 gives us

53·2
k ≡ 2k+2 + 1 (mod 2k+3).

The inductive step for 33·2
k
is similar. ■

Now, our claim tells us that taking our equation 10 · 512h − 9 · 312g = 1 modulo 32, we
have 10 ·17h−9 ·17g ≡ 1 (mod 32). Since 172 ≡ 1 (mod 32) we must have 2 | h and 2 | g, so
we can rewrite our equation as 10 · 524h′ − 9 · 324g′ = 1. Taking this modulo 64, we similarly
find that 2 | h′ and 2 | g′, so we can rewrite this as 10 ·548h′′ −9 ·348g′′ = 1. Repeating this ad
nauseum (using the fact that (2k + 1)2 ≡ 1 (mod 2k+1)), we see that h and g, hence d and
e must both be divisible by 2k for all k, so we must have d = e = 0, giving us the solution
(a, b, c) = (1, 1, 2).

Hence the only solutions to our original equation are

(a, b, c) = (1, 0, 0), (2, 0, 1), (1, 1, 2).
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