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1/1/36. The “Manhattan distance” between two cells is the shortest distance between those
cells when traveling up, down, left, or right, as if one were traveling along city blocks rather
than as the crow flies.

Place numbers from 1-6 in some cells so the following criteria are satisfied:

1. A cell contains at most one number. Cells can be left empty.

2. For each cell containing a number N in the grid, exactly two other cells containing N
are at a Manhattan distance of N .

3. For each cell containing a number N in the grid, no other cells containing N are at a
Manhattan distance less than N .

There is a unique solution, but you do not need to prove that your answer is the only
one possible. You merely need to find an answer that satisfies the conditions of the problem.
(Note: In any other USAMTS problem, you need to provide a full proof. Only in this
problem is an answer without justification acceptable.)
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2/1/36. A regular hexagon is placed on top of a unit circle such that one vertex coincides with
the center of the circle, exactly two vertices lie on the circumference of the circle, and exactly
one vertex lies outside of the circle. Determine the area of the hexagon.

Solution

The relationship between the regular hexagon and unit circle is shown below.

We use the side length of the hexagon, which we will call s, to compute its area. The top
triangle is a 30− 30− 120 triangle in which the two short sides are sides of the hexagon and
the long side is the radius of the unit circle. Applying the Law of Cosines to this triangle
gives us 12 = s2 + s2 − 2 · s · s ·

(
−1

2

)
, which simplifies to s =

√
3
3
.

A regular hexagon can be divided into 6 congruent equilateral triangles, each with side
length s. The area of each equilateral triangle is s2 ·

√
3
4
, so the area of the hexagon is

6s2 ·
√
3
4

= s2 · 3
√
3

2
. Substituting s =

√
3
3
, the area of the hexagon is

√
3
2

.
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3/1/36. A sequence of integers x1, x2, . . . , xk is called fibtastic if the difference between any
two consecutive elements in the sequence is a Fibonacci number.

The integers from 1 to 2024 are split into two groups, each written in increasing order.
Group A is a1, a2, . . . , am and Group B is b1, b2, . . . , bn.

Find the largest integer M such that we can guarantee that we can pick M consecutive
elements from either Group A or Group B which form a fibtastic sequence.

As an illustrative example, if a group of numbers is 2, 4, 11, 12, 13, 16, 18, 27, 29, 30, the
longest fibtastic sequence is 11, 12, 13, 16, 18, which has length 5.

Note: We’ve received questions about what is meant by “Find the largest integerM such
that we can guarantee ...” We mean “guarantee” in the sense that if we distribute 9 bananas
to 2 monkeys, some monkey is guaranteed to get at least 5 bananas regardless of how the
bananas are distributed, even though the other monkey will get fewer than 5 bananas.

Solution

We claim that the answer is M = 3 . First, we show that we cannot do better than
M = 3 by giving an example:

Group A: 1, 2, 3, , , , 7, 8, 9, , , , 13, 14, 15, . . .
Group B: , , , 4, 5, 6, , , , 10, 11, 12, , , , . . .

Here we see that for any four consecutive integers in a group, there is some pair with a
difference of 4, which is not a Fibonacci number. So the maximum M in this case is 3.

Next, we show that M = 3 is always possible. To see this, consider the numbers 1, 2,
3, 4, 5. By the Pigeonhole Principle, some three of these must be in the same group. The
consecutive differences among those three numbers must be at most 3 and this gives us a
group of 3 fibtastic numbers. So M = 3 is always achievable.
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4/1/36. During a lecture, each of 26 mathematicians falls asleep exactly once, and stays asleep
for a nonzero amount of time. Each mathematician is awake at the moment the lecture
starts, and the moment the lecture finishes. Prove that there are either 6 mathematicians
such that no two are asleep at the same time, or 6 mathematicians such that there is some
point in time during which all 6 are asleep.

Note: We consider a mathematician to be asleep at the moment they fall asleep, and
awake at the moment they wake up.

Solution

One of the 26 mathematicians, who we will call Mathematician 26, must be the first to
wake up from their nap. Since they are the first to wake up, at this moment all of the other
mathematicians will either be asleep or will start their nap at this moment or later. Suppose
5 or more mathematicians are asleep at this instant. Since each mathematician sleeps for a
nonzero amount of time, there must have been some previous point in time in which 6 math-
ematicians, including Mathematician 26, were all asleep, satisfying the problem. Thus, we
consider the alternative in which 4 or fewer mathematicians are asleep when Mathematician
26 wakes up. In this scenario, at least 21 mathematicians start their nap at this time or later.

Before continuing, we consider the edge case in which the first two mathematicians to
wake up do so at the same time. Suppose that two mathematicians, Mathematician 26
and Mathematician 25, are the first to wake up and that they wake up simultaneously. If
4 or more mathematicians are asleep at this time, we have a previous instant in which 6
mathematicians, including Mathematicians 26 and 25, were asleep as desired. If 3 or fewer
mathematicians are asleep at the time Mathematicians 26 and 25 wake up, we still have at
least 21 mathematicians who start their nap at this moment or later. An equivalent analysis
applies if three or more mathematicians wake up simultaneously. Since multiple mathemati-
cians waking up at the same time does not affect the number of mathematicians who fall
asleep at that moment or later, we do not discuss this edge case further.

We return to the situation in which at least 21 mathematicians start their nap at the
moment Mathematician 26 wakes up or later. One of these 21 mathematicians, who we will
call Mathematician 21, is the first of these 21 mathematicians to wake up. If 5 or more
mathematicians are asleep when Mathematician 21 wakes up, we have a previous instant in
which 6 mathematicians were asleep at the same time. If not, we continue this process and
perform the same analysis at the moments in which at least 16, 11, 6, and finally 1 mathe-
matician start their nap at or after a particular time. If we never have 6 mathematicians who
are asleep at the same time, then we have 6 mathematicians, specifically Mathematicians
1, 6, 11, 16, 21, and 26, whose sleep times don’t overlap at all. Thus, there are either 6
mathematicians such that no two are asleep at the same time, or 6 mathematicians such
that there is some point in time during which all 6 are asleep.
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Solution

We begin by showing that a weaker-looking version of the problem is true:

During a lecture, each of 26 mathematicians falls asleep exactly once, and stays
asleep for a nonzero amount of time. Each mathematician is awake at the moment
the lecture starts, and the moment the lecture finishes. Prove that there are
either 6 mathematicians such that no two are asleep at the same time, or 6
mathematicians such that for each pair of mathematicians, there is some
point in time during which both mathematicians are asleep.

Let M be the set of mathematicians. Build a digraph on M as follows: Draw a diedge
from m1 to m2 if and only if the period of time m1 is asleep falls entirely before the period
of time m2 is asleep (i.e., m1 wakes up before m2 falls asleep). Note that by construction,
this digraph is transitive.

Now, decompose this graph as follows: Let V0 be the set of vertices with indegree zero.
For each vertex m ∈ M \ V0, define f(m) to be the maximum distance of m from any vertex
in V0, taken across all possible paths from vertices in V0 to m. Then, for k ≥ 1, let Vk be
the set of vertices m such that f(m) = k. An equivalent construction is to let V1 be the set
of vertices whose in-neighborhood is in V0, and Vk (for k ≥ 2) be the set of vertices whose
in-neighborhood is in (V0 ∪ V1 ∪ · · · ∪ Vk−1) \ (V0 ∪ V1 ∪ · · · ∪ Vk−2).

By the Pigeonhole Principle, since there are 26 vertices in our graph, we’ll either get 6 sets
in our decomposition, or some set will have 6 vertices. If we get 6 sets in our decomposition,
we can find 6 vertices in V0, V1, . . . , V5 forming a directed path, giving us 6 mathematicians
who fall asleep in sequence (so that no two are asleep at the same time). If we get 6 vertices
in the same set, we know there are no diedges between any two vertices in that set (else one
would be in a higher-numbered set), so the periods when the corresponding mathematicians
are asleep must overlap.

Now we show that if there are n mathematicians such that for each pair, there is some
point during which both are asleep, then there must be some point in time during which
all n mathematicians are asleep. Represent mathematician i’s sleeping time as an interval
of real numbers [ai, bi), and sort the intervals so that a1 ≤ · · · ≤ an. If there is some point
during which mathematicians i and j are both asleep, we know that aj ≤ bi for all i and j.
Hence for any i we know that ai ≤ an ≤ bi, so all mathematicians are asleep at time an. This
strengthens the version of the problem at the start of our solution to the original problem.
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Solution

A partially ordered set is a set with an operation < that satisfies x ̸< x, and x < y and
y < z implies x < z. For example, the set of all positive integers, with x < y whenever x is a
proper divisor of y, is partially ordered. A chain in a partially ordered set is a subset which
is totally ordered x1 < x2 < · · · < xn. An antichain is a subset in which no two elements
are comparable; that is, no x < y.

Dilworth’s Theorem: In a finite partial ordered set, if the largest antichain is of size n,
the set can be partitioned into n chains. If the largest chain is of size n, the set can be
partitioned into n antichains.

Make a partial order on the mathematicians in which mathematician X is less than
mathematician Y if X wakes up at or before the time Y goes to sleep. Thus an antichain
is a set of mathematicians for which every pair were asleep at the same time. Since each
mathematician fell asleep only once, at the time the last mathematician in an antichain
went to sleep, the others in that antichain must have all still been asleep, as anyone who
had already woken up would have to go back to sleep in order to be asleep at the same
time as the first one. Thus all mathematicians in an antichain were asleep at the same
time. A chain is a set of mathematicians for which each one woke up at or before the time
the next one went to sleep, so no two mathematicians in a chain were asleep at the same time.

If no six mathematicians were asleep at the same time, the largest antichain is of size at
most 5. By Dilworth’s Theorem, the set can be partitioned into 5 chains, and since 5 ·5 < 26,
some chain must be of length 6, so we have a set of six mathematicians with no two asleep
at the same time.

Alternatively, if there were no six mathematicians for which no two were asleep at the
same time, there is no chain of length 6, so by Dilworth’s Theorem, the set can be partitioned
into 5 antichains. Since 5 · 5 < 26, there must be an antichain of size 6, and we have shown
that all six mathematicians in that antichain were asleep at the same time.
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5/1/36. Let f(x) = x2 + bx+ 1 for some real number b. Across all possible values of b, find all
possible values for the number of integers x that satisfy f(f(x) + x) < 0.

That is, if there are some values of b that give us 180 integer solutions for x and there are
other values of b that give us 314 integer solutions for x (and these are the only possibilities),
the answer would be 180, 314 .

Solution

When |b| ≤ 2, f(x) ≥ 0 for all real x, so there is no solution to f(f(x) + x) < 0.

When |b| > 2, let r1 and r2 be the two roots of f(x) = 0, and WLOG, let r1 < r2. We
can write f(x) = (x− r1)(x− r2). Then we have:

f(f(x) + x) = (f(x) + x− r1)(f(x) + x− r2)

= ((x− r1)(x− r2) + x− r1)((x− r1)(x− r2) + x− r2)

= (x− r1)(x− (r2 − 1))(x− (r1 − 1))(x− r2).

Therefore, f(f(x) + x) has four roots: r1 − 1, r1, r2 − 1, and r2.

CASE 1. r2 − r1 < 1. The solution to f(f(x) + x) < 0 is (r1 − 1, r2 − 1) ∪ (r1, r2).

Since r1r2 = 1, either 0 < r1 < 1 < r2, or r1 < −1 < r2 < 0. Since r2 − r1 < 1, we must
have either 0 < r1 < 1 < r2 < 2, or −2 < r1 < −1 < r2 < 0 respectively. Therefore, there
is a single integer in (r1, r2), which also means there is a single integer in (r1 − 1, r2 − 1).
Therefore, 2 integers satisfy f(f(x) + x) < 0.

CASE 2. r2 − r1 ≥ 1. The solution to f(f(x) + x) < 0 is (r1 − 1, r1) ∪ (r2 − 1, r2).

CASE 2.1. Neither r1 nor r2 is an integer. Then there is one integer in each of (r1−1, r1)
and (r2 − 1, r2), giving us 2 integer values of x.

CASE 2.2. One of r1 and r2 is an integer. Then there is one integer in one of (r1 − 1, r1)

and (r2 − 1, r2), and no integer in the other. In this case, |b| = |r1 + r2| = m+
1

m
for some

integer m > 1.

Note that r1 and r2 cannot be both integers, since r1r2 = 1 and r1 ̸= r2.
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To sum up, the number of integers x that satisfy f(f(x) + x) < 0 is:
0, if |b| ≤ 2,

1, if |b| = m+
1

m
for some integer m > 1,

2, otherwise.
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