

USA Mathematical Talent Search
Round 1 Solutions

Year 35 - Academic Year 2023-2024
WWW.usamts.org
$\mathbf{1} / \mathbf{1} / \mathbf{3 5}$. Fill each unshaded cell of the grid with a number that is either 1,3 , or 5 . For each cell, exactly one of the touching cells must contain the same number. Here touching includes cells that only share a point, i.e. touch diagonally.

1		1		3		5
		1	1	3	5	
5			5			

There is a unique solution, but you do not need to prove that your answer is the only one possible. You merely need to find an answer that satisfies the conditions of the problem. (Note: In any other USAMTS problem, you need to provide a full proof. Only in this problem is an answer without justification acceptable.)

Solution

5	3	3	5	5	3	5
1	5	1	1	3	1	5
1	3	3		5	1	3
	5	1	1	3	5	3
3	3	5	3		1	
5		1	1	5	1	5
5	3	3	5	3	3	5

USA Mathematical Talent Search
 Round 1 Solutions

Year 35 - Academic Year 2023-2024
WWW.usamts.org
$\mathbf{2 / 1} / \mathbf{3 5}$. Suppose that the 101 positive integers

$$
2024,2025,2026, \ldots, 2124
$$

are concatenated in some order to form a 404 -digit number. Can this number be prime?

Solution

No. This number can be written as

$$
n=a_{100} \cdot 10,000^{100}+a_{99} \cdot 10,000^{99}+\cdots+a_{1} \cdot 10,000^{1}+a_{0} \cdot 10,000^{0}
$$

for some rearrangement $a_{0}, a_{1}, \ldots, a_{100}$ of the positive integers $2024,2025, \ldots, 2124$. Then

$$
\begin{aligned}
n & \equiv a_{100} \cdot 10,000^{100}+a_{99} \cdot 10,000^{99}+\cdots+a_{1} \cdot 10,000^{1}+a_{0} \cdot 10,000^{0} \quad(\bmod 9999) \\
& \equiv a_{100} \cdot 1^{100}+a_{99} \cdot 1^{99}+\cdots+a_{1} \cdot 1^{1}+a_{0} \cdot 1^{0} \quad(\bmod 9999) \\
& \equiv a_{100}+a_{99}+\cdots+a_{1}+a_{0} \quad(\bmod 9999) \\
& \equiv 2024+2025+\cdots+2124 \quad(\bmod 9999) \\
& \equiv 101 \cdot 2023+(1+2+\cdots+101) \quad(\bmod 9999) \\
& \equiv 101 \cdot 2023+\frac{101 \cdot 102}{2} \quad(\bmod 9999) \\
& \equiv 101 \cdot(2023+51) \quad(\bmod 9999) .
\end{aligned}
$$

Since $101 \mid 9999$, it follows that n must be a multiple of 101 and therefore cannot be prime.

USA Mathematical Talent Search
Round 1 Solutions
Year 35 - Academic Year 2023-2024
WWW.usamts.org

$3 / 1 / 35$. Let $n \geq 2$ be a positive integer, and suppose buildings of height $1,2, \ldots, n$ are built in a row on a street. Two distinct buildings are said to be roof-friendly if every building between the two is shorter than both buildings in the pair. For example, if the buildings are arranged $5,3,6,2,1,4$, there are 8 roof-friendly pairs: $(5,3),(5,6),(3,6),(6,2),(6,4),(2,1)$, $(2,4),(1,4)$. Find, with proof, the minimum and maximum possible number of roof-friendly pairs of buildings, in terms of n.

Solution

The minimum is $n-1$, as any adjacent pair of buildings is roof-friendly. The minimum is achieved by the arrangement $1,2,3, \ldots, n$.

The maximum is $2 n-3$. We prove, by induction, the stronger result that an arrangement can have $2 n-3$ roof-friendly pairs if and only if the two tallest buildings are at the two ends of the row of buildings. The base case $n=2$ is trivial. For the inductive step, let $n>2$ be a positive integer and assume the result is proved for all smaller n.

Suppose that the tallest building is in spot k with $1<k<n$. Then there can be no roof-friendly pair where the two buildings are on the opposite sides of the tallest building. So by the inductive hypothesis there are at most $2 k-3$ roof-friendly pairs among the first k buildings and $2(n-k+1)-3$ roof-friendly pairs among the last $n-k+1$ buildings, for a total of at most $2 k-3+2(n-k+1)-3=2 n-4$ pairs, below the desired maximum.

If the tallest building is at one end (say, in the leftmost space), then suppose that the second-tallest building is in space k with $1<k<n$. The exact same argument as the above case shows that there are at most $2 n-4$ roof-friendly pairs.

Now assume that the tallest building is at one end (in space 1) and the second-tallest building is at the other end (in space n). Say that the third-tallest building is in space k with $1<k<n$. Then by the inductive hypothesis there are exactly $2 k-3$ roof-friendly pairs among the first k buildings, exactly $2(n-k+1)-3$ roof-friendly pairs among the last $n-k+1$ buildings, and the two tallest buildings are also a roof-friendly pair. Thus, there are $2 k-3+2(n-k+1)-3+1=2 n-3$ roof-friendly pairs, completing the proof.

USA Mathematical Talent Search
 Round 1 Solutions

Year 35 - Academic Year 2023-2024
WWW.usamts.org
$4 / 1 / 35$. Prove that, for any real numbers $1 \leq \sqrt{x} \leq y \leq x^{2}$, the following system of equations has a real solution (a, b, c) :

$$
\begin{aligned}
a+b+c & =\frac{x+x^{2}+x^{4}+y+y^{2}+y^{4}}{2} \\
a b+a c+b c & =\frac{x^{3}+x^{5}+x^{6}+y^{3}+y^{5}+y^{6}}{2} \\
a b c & =\frac{x^{7}+y^{7}}{2} .
\end{aligned}
$$

Solution

The expressions on the left sides of the equations remind us of Vieta's formulas for cubic polynomials. (a, b, c) is a solution if and only if a, b, c are roots of the polynomial

$$
P(z)=\frac{Q(z)+R(z)}{2}
$$

where

$$
Q(z)=(z-x)\left(z-x^{2}\right)\left(z-x^{4}\right)
$$

and

$$
R(z)=(z-y)\left(z-y^{2}\right)\left(z-y^{4}\right) .
$$

By symmetry, we can assume without loss of generality that $y \geq x$. Then, $1 \leq x \leq y \leq$ $x^{2} \leq y^{2} \leq x^{4} \leq y^{4}$. We consider several cases.

If $y>x$ and $y \neq x^{2}$, we have

$$
\begin{aligned}
& Q(x)=0, Q(y)>0, Q\left(x^{2}\right)=0, Q\left(y^{2}\right)<0, Q\left(x^{4}\right)=0, Q\left(y^{4}\right)>0 \\
& R(x)<0, R(y)=0, R\left(x^{2}\right)>0, R\left(y^{2}\right)=0, R\left(x^{4}\right)<0, R\left(y^{4}\right)=0 .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& P(x)<0, P(y)>0 \\
& P\left(x^{2}\right)>0, P\left(y^{2}\right)<0, \\
& P\left(x^{4}\right)<0, P\left(y^{4}\right)>0
\end{aligned}
$$

Thus, P has roots in the intervals $(x, y),\left(x^{2}, y^{2}\right)$, and $\left(x^{4}, y^{4}\right)$, so P has three real roots.
If $y>x$ and $y=x^{2}$, we have $Q\left(x^{2}\right)=R\left(x^{2}\right)=0$, so $P\left(x^{2}\right)=0$. We also have $Q\left(x^{4}\right)=R\left(x^{4}\right)=0$, giving us $P\left(x^{4}\right)=0$. So, x^{2} and x^{4} are two real roots. Substituting $y=x^{2}$ into $R(z)$, we obtain
$P(x)=\frac{(z-x)\left(x-x^{2}\right)\left(z-x^{4}\right)+\left(z-x^{2}\right)\left(z-x^{4}\right)\left(z-x^{8}\right)}{2}=\frac{\left(z-x^{2}\right)\left(z-x^{4}\right)\left(2 z-x^{8}-x\right)}{2}$.

USA Mathematical Talent Search
Round 1 Solutions
Year 35 - Academic Year 2023-2024
WWW.usamts.org

The third real root occurs when $2 z-x^{8}-x=0$, which gives us $z=\frac{x^{8}+x}{2}$ for the third real root.

If $1<x=y$, then

$$
\begin{aligned}
& Q(x)=0, Q(y)=0, Q\left(x^{2}\right)=0, Q\left(y^{2}\right)=0, Q\left(x^{4}\right)=0, Q\left(y^{4}\right)=0 \\
& R(x)=0, R(y)=0, R\left(x^{2}\right)=0, R\left(y^{2}\right)=0, R\left(x^{4}\right)=0, R\left(y^{4}\right)=0
\end{aligned}
$$

This gives us

$$
P(x)=0, P\left(x^{2}\right)=0, P\left(x^{4}\right)=0
$$

so x, x^{2}, and x^{4} are three real roots.
Finally, if $1=x=y$, then $(a, b, c)=(1,1,1)$ is a solution to our system of equations.

USA Mathematical Talent Search
Round 1 Solutions
Year 35 - Academic Year 2023-2024
WWW.usamts.org
$5 / 1 / 35$. Let $A_{1} A_{2} A_{3} \cdots A_{13}$ be a regular 13-gon, and let lines $A_{6} A_{7}$ and $A_{8} A_{9}$ intersect at B. Show that the shaded area below is half the area of the entire polygon (including triangle $A_{7} A_{8} B$).

Solution

We want to show that the shaded portions and the unshaded portions of the polygon have the same area. We add the following lines to the diagram, splitting the polygon into triangles.

Triangles $A_{1} A_{2} A_{13}$ and $A_{8} A_{7} A_{9}$ are congruent, so their areas cancel. Likewise, triangles $A_{3} A_{12} A_{13}$ and $A_{6} A_{10} A_{9}$ are congruent, and triangles $A_{4} A_{11} A_{12}$ and $A_{5} A_{11} A_{10}$ are congruent.

Thus, the problem now is to prove that the total area of the red region is equal to the total area of the blue region.

USA Mathematical Talent Search
Round 1 Solutions
Year 35 - Academic Year 2023-2024

In our next steps, we will compare each colored triangle to a triangle with base $\overline{A_{7} A_{8}}$. Let M be the midpoint of $\overline{A_{7} A_{8}}$, let D be the midpoint of $\overline{A_{5} A_{10}}$, and let F be the midpoint of $\overline{A_{3} A_{12}}$.

Triangles $A_{2} A_{3} A_{13}$ and $A_{7} A_{8} A_{5}$ are congruent, so they have the same area. And $\overline{A_{5} D}$ is parallel to $\overline{A_{7} A_{8}}$, so triangle $A_{7} A_{8} A_{5}$ has the same area as triangle $A_{7} A_{8} D$, which is

$$
\frac{1}{2} \cdot s \cdot M D
$$

where $s=A_{7} A_{8}$. The area of triangle $A_{6} A_{7} A_{9}$ is also $\frac{1}{2} \cdot s \cdot M D$.
Similarly, we can show that the areas of triangles $A_{3} A_{4} A_{12}$ and $A_{5} A_{6} A_{10}$ are equal to $\frac{1}{2} \cdot s \cdot M F$, and the area of triangle $A_{4} A_{5} A_{11}$ is equal to $\frac{1}{2} \cdot s \cdot M A_{1}$. Now we must deal with the area of triangle $A_{7} A_{8} B$.

Let C be the intersection of diagonals $\overline{A_{5} A_{8}}$ and $\overline{A_{7} A_{10}}$, and let E be the intersection of diagonals $\overline{A_{5} A_{12}}$ and $\overline{A_{3} A_{10}}$. By symmetry, C and E lie on $\overline{A_{1} B}$.

USA Mathematical Talent Search
Round 1 Solutions

Year 35 - Academic Year 2023-2024
WWW.usamts.org

To make it easier to refer to the angles in the diagram, let $\theta=\frac{180^{\circ}}{13}$. Each interior angle of the 13 -gon is 11θ, so $\angle A_{6} A_{7} A_{8}=\angle A_{7} A_{8} A_{9}=11 \theta$. Then $\angle B A_{7} A_{8}=\angle B A_{8} A_{7}=$ $180^{\circ}-11 \theta=2 \theta$. Also, $\angle A_{5} A_{8} A_{7}=\angle A_{10} A_{7} A_{8}=2 \theta$. (For example, if O is the center of the 13-gon, then by the Inscribed Angle Theorem, $\angle A_{5} A_{8} A_{7}=\frac{\angle A_{5} O A_{7}}{2}=\frac{4 \theta}{2}=2 \theta$.) Hence, C is the reflection of B in $\overline{A_{7} A_{8}}$, which means triangle $A_{7} A_{8} B$ has the same area as triangle $A_{7} A_{8} C$, which is $\frac{1}{2} \cdot s \cdot M C$.

The total area of the red triangles is then

$$
2 \cdot \frac{1}{2} \cdot s \cdot M D+\frac{1}{2} \cdot s \cdot M A_{1}
$$

and the total area of the blue triangles is

$$
2 \cdot \frac{1}{2} \cdot s \cdot M F+\frac{1}{2} \cdot s \cdot M C
$$

The problem now is to show that

$$
2 \cdot M D+M A_{1}=2 \cdot M F+M C .
$$

In the diagram, we can compute that $\angle A_{8} A_{5} A_{10}=\angle A_{7} A_{10} A_{5}=\angle A_{12} A_{5} A_{10}=\angle A_{3} A_{10} A_{5}=$ $A_{10} A_{3} A_{12}=\angle A_{5} A_{12} A_{3}=\angle A_{1} A_{3} A_{12}=\angle A_{3} A_{12} A_{1}=2 \theta$. Hence, $A_{5} C A_{10} E$ and $A_{3} E A_{12} A_{1}$ are rhombi.

That means D is the midpoint of $\overline{C E}$, so $2 \cdot M D=M C+M E$. Also, F is the midpoint of $\overline{E A_{1}}$, so $2 \cdot M F=M E+M A_{1}$. Hence,

$$
\begin{aligned}
2 \cdot M D+M A_{1} & =M C+M E+M A_{1} \\
& =2 \cdot M F+M C,
\end{aligned}
$$

as desired.

