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1/3/32. Place the 21 two-digit prime numbers in the white
squares of the grid on the right so that each two-digit prime
is used exactly once. Two white squares sharing a side must
contain two numbers with either the same tens digit or ones
digit. A given digit in a white square must equal at least
one of the two digits of that square’s prime number.

There is a unique solution, but you do not need to prove
that your answer is the only one possible. You merely
need to find an answer that satisfies the constraints above.
(Note: in any other USAMTS problem, you need to provide a full proof. Only in this
problem is an answer without justification acceptable.)

Solution

31 71 73 23 83

37 79 29 89

97 19 59

67 47 17 53

61 41 11 13 43
4 1 1 3

9 9 5

3 1 3 2
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2/3/32. Find distinct points A, B, C, and D in the plane such that the length of the segment
AB is an even integer, and the lengths of the segments AC, AD, BC, BD, and CD are
all odd integers. In addition to stating the coordinates of the points and distances between
points, please include a brief explanation of how you found the configuration of points and
computed the distances.

Solution

Many answers are possible. We provide three examples of constructions that work, all
of which revolve around a triangle with side lengths 3, 5, and 7, which has an interior angle
of 120◦. As for how to find this triangle, the Law of Cosines tells us that any triangle with
integer lengths must have interior angles with rational cosines. We might first consider using
right triangles for our construction, but since every primitive Pythagorean triple has one
even-length leg, we would end up with too many even lengths. This leads us to look for
triangles with 60◦ or 120◦ angles.

Construction 1. Consider the isosceles trapezoid ABCD with vertices at A = (0, 0), B =

(8, 0), C = (11
2
, 5
√
3

2
), D = (5

2
, 5
√
3

2
). Let E and F be the feet of the perpendiculars from points

C and D respectively to AB.

A B

CD

EF

We have AB = 8 and CD = 3. Also, CE = DF = 5
√
3

2
and AF = BE = 5

2
, so 4ADF

and 4BCE are 30−60−90 right triangles, and AD = BC = 5. Since ABCD is an isosceles
trapezoid (or by using the angles in the previously mentioned triangle), we know that its
opposite angles are supplementary, so it must be a cyclic quadrilateral. Therefore, Ptolemy’s
Theorem tells us that

AC ·BD = AB · CD + AD ·BC

= 8 · 3 + 5 · 5
= 49.

Since ABCD is isosceles, by symmetry we have AC = BD, which means that AC = BD = 7.
Hence, the vertices of ABCD have the desired property.

Construction 2. Let 4ACD be an equilateral triangle with side length 7. Consider that
the line CD divides the plane into two half-planes and that the Triangle Inequality tells us
that a triangle with side lengths 3, 5, and 7 is nondegenerate. Hence, it is possible to place
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a point B so that BC = 3, BD = 5, and B is in the half-plane determined by BD that does
not contain A.

A

C

B

D

7

7

7

3 5

We claim that ACBD is cyclic: Using the Law of Cosines on 4BCD, we see that

CD2 = BC2 + BD2 − 2 ·BC ·BD · cos(∠CBD)

⇔ 72 = 32 + 52 − 2 · 3 · 5 · cos(∠CBD)

⇔ −1

2
= cos(∠CBD),

which tells us that ∠CBD = 120◦. Since 4ACD is equilateral, we have ∠CAD = 60◦, so
the opposite angles of ACBD are supplementary and hence ACBD is cyclic. Therefore, by
Ptolemy’s Theorem, we have

AB · CD = AC ·BD + AD ·BC

⇔ AB · 7 = 7 · 5 + 7 · 3
⇔ AB = 8.

Hence, the vertices of ACBD have the desired property.

Construction 3. Let AB be a line segment with length 8. Let C lie on AB so that AC = 3
and BC = 5, and let D be a point so that 4ACD is equilateral. (Two such points must
always exist, but since we need only provide a construction here, consider that the points
A = (0, 0), B = (8, 0), C = (3, 0), and D = (3

2
, 3
√
3

2
) satisfy this.)

A BC

D

3 5

From this, we immediately see that AB = 8, BC = 5, and AC = AD = CD = 3. To
compute BD, note that since 4ACD is equilateral and B lies on the extension of AC, we
have ∠BCD = 120◦, so by the Law of Cosines we have

BD2 = BC2 + CD2 − 2 ·BC · CD · cos(∠BCD)

= 52 + 32 − 2 · 5 · 3 · cos(120◦)

= 49,

so BD = 7. Hence, the vertices A,B,C,D have the desired property.
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3/3/32. Find, with proof, all positive integers n with the following property: There are only
finitely many positive multiples of n which have exactly n positive divisors.

Solution

We claim that the only positive integers n with the desired property are n = 1, n = 4,
and all other squarefree integers n (that is, all other integers not divisible by the square of
a prime number).

First, we first show that each of these n have the desired property. For n = 1, there is
only one multiple of 1 with exactly 1 positive divisor, namely 1 itself. For n = 4, any positive
integer with exactly 4 divisors must take the form pq or p3, where p and q are distinct primes;
since 4 is a power of 2, the only multiple of 4 which takes either of these forms is 23 = 8, so
n = 4 indeed has the desired property.

Now suppose n ≥ 2 is a squarefree integer. Then n must be the product of distinct
primes, so let n = p1p2 · · · pk, where all pi are distinct, and suppose m is a multiple of n with
n divisors. Let

m = pe11 pe22 · · · p
ek
k ·m

′

be the prime factorization of m, where gcd(m′, n) = 1. By counting the number of divisors
of m, we have

(e1 + 1)(e2 + 1) · · · (ek + 1) · n′ = n = p1p2 · · · pk,

where n′ is the number of divisors of m′. The right-hand side of this equation has exactly k
prime divisors, counting with multiplicity; however, each term ei + 1 ≥ 2 has at least one
prime divisor. It follows that n′ = 1, so m′ only has one divisor and therefore m′ = 1. Hence,
the numbers e1 +1, e2 +1, . . . , ek +1 must be a permutation of the numbers p1, p2, . . . , pk. So
there are k! possible values for m, and thus only finitely many positive multiples of n which
have exactly n positive divisors. This shows that n = 1, n = 4, and all other squarefree
integers n have the desired property, and it remains to show these are the only such n.

Finally, suppose that n 6= 4 and n is not squarefree. We will show there are infinitely
many positive multiples of n with exactly n positive divisors. Since n is not squarefree, it is
divisible by the square of some prime. Suppose first that p2 | n, where p is some odd prime.
(We will deal with the case of p = 2 later.) Let

n = pe · pe11 · pe22 · · · p
ek
k

be the prime factorization of n, where e ≥ 2. Given any prime q distinct from p, p1, p2, . . . , pk,
let

mq = pp
e−1−1 · pp

e1
1 −1

1 p
p
e2
2 −1

2 · · · pp
ek
k −1

k · qp−1.
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We claim that mq is a positive multiple of n with exactly n positive divisors: First, note
that mq has exactly

(pe−1 − 1 + 1) · (pe11 − 1 + 1) · (pe22 − 1 + 1) · · · (pekk − 1 + 1) · (p− 1 + 1)

= (pe−1) · (pe11 ) · (pe22 ) · · · (pekk ) · p
= pe · pe11 · pe22 · · · p

ek
k

= n

divisors. To show that mq is a multiple of n, we claim that the exponents of p, p1, . . . , pk
in the prime factorization of n are less than or equal to that of n, and show this through
proving a more general lemma:

Lemma. If a ≥ 2 and b ≥ 1 are integers and (a, b) 6= (2, 1), then ab ≥ b + 2.

Proof. If b = 1, then we must have a ≥ 3, and so ab = a ≥ 3 = b + 2. If b ≥ 2 (and a ≥ 2)
then we have

ab ≥ 2b

=

(
b

0

)
+

(
b

1

)
+

(
b

2

)
+ · · ·+

(
b

b

)
≥
(
b

0

)
+

(
b

1

)
+

(
b

b

)
= b + 2,

as desired.

Now, recall that

mq = pp
e−1−1 · pp

e1
1 −1

1 p
p
e2
2 −1

2 · · · pp
ek
k −1

k · qp−1.

Since p ≥ 3 and e ≥ 2, our Lemma tells us that pe−1 ≥ e + 1. Likewise, since each pi ≥ 2
and ei ≥ 1, we have peii ≥ ei + 1. Therefore, it follows that mq is a multiple of n. However,
since there are infinitely many primes, there are infinitely many choices for q, so there are
infinitely many possible multiples mq of n with exactly n positive divisors.

It remains to consider the case in which n 6= 4 and 2 is the only prime whose square
divides n. In this case, we must either have n = 2e for some e ≥ 3, or n = 2e · p1 · p2 · · · pk,
where e ≥ 2 and the pi’s are distinct odd primes. In the first case, given any odd prime q,
let

mq = 22e−1−1 · q.

This has (2e−1 − 1 + 1) · 2 = 2e = n divisors. Furthermore, as our Lemma tells us that
2e−1 ≥ e + 1, this is a multiple of n.
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In the second case, we consider two subcases: e = 2 and e > 2. If e = 2, for any odd
prime q distinct from all the pi’s, let

mq = 2p1−1 · p1 · pp2−12 · · · ppk−1k · q.

Since pi ≥ 3 for all 1 ≤ i ≤ k, this is a multiple of n = 22 · p1 · p2 · · · pk,. Additionally, the
number of divisors is p1 · 2 · p2 · · · pk · 2 = n.

If e > 2, then for any odd prime q distinct from all the pi’s, let

mq = 22e−1−1 · pp1−11 · pp2−12 · · · ppk−1k · q.

This is a multiple of n, and it has

(2e−1 − 1 + 1) · (p1 − 1 + 1) · (p2 − 1 + 1) · · · (pk − 1 + 1) · (1 + 1)

= 2e−1 · p1 · p2 · · · pk · 2
= 2e · p1 · p2 · · · pk
= n

divisors.

In all cases, since there are infinitely many primes, there are infinitely many choices for
q, and hence infinitely many positive multiples mq of n with exactly n positive divisors, as
desired.
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4/3/32. In a group of n > 20 people, there are some (at least one, and possibly all) pairs
of people that know each other. Knowing is symmetric; if Alice knows Blaine, then Blaine
also knows Alice. For some values of n and k, this group has a peculiar property: If any 20
people are removed from the group, the number of pairs of people that know each other is

at most
n− k

n
times that of the original group of people.

(a) If k = 41, for what positive integers n could such a group exist?
(b) If k = 39, for what positive integers n could such a group exist?

Solution

We claim that if k = 41, such a group could not exist for any positive integer n, and if
k = 39, such a group could exist for any positive integer n ≥ 381. To show this, we present
a solution making use of graph theory. For more background, we invite the reader to con-
sult an external introductory reference on the subject, e.g. Miklós Bóna’s A Walk Through
Combinatorics or Oscar Levin’s Discrete Mathematics .

Suppose such a group does exist; we will investigate the conditions under which this
could happen. Let G be the graph generated by this group of people and the acquaintances
within the group, where each vertex represents a person and two vertices are connected by
an edge if and only if the two respective people know each other. Let V (G) and E(G) be
the set of vertices and edges of G respectively, so that |V (G)| = n and |E(G)| is the number
of pairs of people that know each other.

The property this group has applies when any 20 people are removed from the group, but
only considering what happens when we remove a few particular sets of 20 people from this
group would not tell us much about the group itself. However, removing sets of 20 people
in a “symmetric” fashion could shed some light on this.

To this end, consider what happens when we remove every possible set of 20 people from
the group, and sum up the number of pairs of people that know each other across all these
smaller groups. In terms of G, this is the number of edges of all induced subgraphs 1 given
by taking a vertex subset of size n− 20, given by

T =
∑

S⊆V (G),|S|=n−20

|E(G[S])|.

At first glance, this is not a very tractable sum, but we can also express T in terms of
|E(G)| by looking at how many times each edge is counted: Notice that in this sum, each
edge e ∈ E(G) is counted once for every induced subgraph G[S] where e ∈ E(G[S]). By
definition, e ∈ E(G[S]) if and only if both endpoints of e are in S, so we can count the

1By an induced subgraph G[S], we mean the subgraph of G whose vertex set is S ⊆ V (G), and whose
edge set consists of all edges in E(G) with both endpoints in S.

www.usamts.org
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number of possible choices of G[S] by counting the number of possible of choices of S. If

both endpoints of e are in S, then there are

(
n− 2

20

)
ways to choose a subset S ⊆ V (G)

with |S| = n − 20, since we can pick such a vertex subset by excluding any 20 vertices of
V (G) aside from the two endpoints of e. Adding this up for every edge e ∈ E(G), this tells

us that T =

(
n− 2

20

)
|E(G)|.

Now, the condition in our problem lets us compare values of |E(G[S])| in our summation
for T and |E(G)|: Since the number of pairs of people that know each other in any group of

n − 20 of these people is at most
n− k

n
times that of the original group of people, for any

choice of S ⊆ V (G) where |S| = n− 20 we have

|E(G[S])| ≤ n− k

n
· |E(G)|.

Also, there are

(
n

n− 20

)
=

(
n

20

)
vertex subsets of G of size n− 20, so

T =
∑

S⊆V (G),|S|=n−20

|E(G[S])|

≤
∑

S⊆V (G),|S|=n−20

n− k

n
· |E(G)|

=

(
n

20

)
· |E(G)| · n− k

n
.

Substituting in our earlier expression for T, we get(
n− 2

20

)
· |E(G)| ≤

(
n

20

)
· |E(G)| · n− k

n
.

This simplifies to

(n− 20)(n− 21) ≤ n(n− 1) · n− k

n
.

For part (a), when k = 41, this simplifies to n ≤ −379. Since we are given that n > 20,
we conclude that there are no positive integers n where such a group could exist.

For part (b), when k = 39, this simplifes to n ≥ 381. We claim such a group of people
could exist for every such n: For a fixed n ≥ 381, suppose there were a group of n people
where everyone knew each other. Then the corresponding graph G would be the complete

graph Kn (with

(
n

2

)
edges), and every subgraph G[S] with S ⊆ V (G), |S| = n− 20 would

be the complete graph Kn−20 (with

(
n− 20

2

)
edges). But since n ≥ 381, it follows by
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algebra that

(
n− 20

2

)
≤ n− 39

n
·
(
n

2

)
, which means that this group fits the conditions in

the problem. Therefore, such a group exists for all n ≥ 381 .
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5/3/32. Let n ≥ 3 be an integer. Let f be a function from the set of all integers to itself with
the following property: If the integers a1, a2, . . . , an form an arithmetic progression, then the
numbers

f(a1), f(a2), . . . , f(an)

form an arithmetic progression (possibly constant) in some order. Find all values for n such
that the only functions f with this property are the functions of the form f(x) = cx + d,
where c and d are integers.

Solution

We claim that an integer n ≥ 3 satisfies the given condition if and only if it is composite.

First, suppose n ≥ 3 is prime. Then the function f given by f(x) = x (mod n) is not of
the form f(x) = cx+ d, but has the desired property: Take any n-term arithmetic sequence
(ai) = a1, a2, · · · , an, and consider the sequence

(bi) = f(a1), f(a2), · · · , f(an).

If the common difference of (ai) is a multiple of n, then all of its terms have the same residue
mod n, so (bi) will be constant and hence arithmetic. If the common difference of this se-
quence is not a multiple of n, then the terms of (bi) will be 0, 1, 2, · · · , n− 1 in some order,
which is an arithmetic sequence.

Now, suppose that n ≥ 3 is composite, and let f be a function with the given property.
We claim that f must be linear. First, suppose that there exists an integer m such that
f(m) = f(m + n) = k. Since n is composite, we can write n = ab for some a, b ≥ 2. Then
the n-term sequence

f(m), f(m + a), f(m + 2a), · · · , f(m + (n− 1)a)

is an arithmetic sequence containing both f(m) and f(m+n), so it must be constant. Hence,
we have f(m) = f(m + a) = k. Now, the n-term sequence

f(m), f(m + 1), f(m + 2), · · · , f(m + n− 1)

contains both f(m) and f(m + a), so it must also be a constant arithmetic sequence. Since
n ≥ 3, the sequence f(m + 1), f(m + 2), · · · , f(m + n) thus contains two equal terms, so it
is also constant and therefore f(m + 1) = k. Then, by successively applying this reasoning
at the sequences

f(m + 2), f(m + 3), · · · , f(m + n + 1),

f(m + 3), f(m + 4), · · · , f(m + n + 2),

f(m + 4), f(m + 5), · · · , f(m + n + 3),

www.usamts.org
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we see that f(m+ 2) = f(m+ 3) = f(m+ 4) = k. Continuing this way, we get f(m+ s) = k
for every s ≥ 0. Similarly, by successively applying this reasoning to the sequences

f(m− 1), f(m), · · · , f(m + n− 2),

f(m− 2), f(m− 1), · · · , f(m + n− 3),

f(m− 3), f(m− 2), · · · , f(m + n− 4),

we see that f(m− 1) = f(m− 2) = f(m− 3) = k. Continuing this way, we get f(m+ s) = k
for every s ≤ 0. Hence, f must be constant and therefore must be linear.

Next, assume that f(m) 6= f(m+n) for every integer m. We claim that for every integer
m, the n + 1 numbers

f(m), f(m + 1), f(m + 2), · · · , f(m + n)

form an arithmetic sequence in some order, with f(m) and f(m + n) being the first and
last terms of the sequence in some order. First, since f is a function with the given prop-
erty, there exist some integers a and d such that f(m), f(m + 1), · · · , f(m + n − 1) are
a, a + d, a + 2d, · · · , a + (n− 1)d in some order.

Now, we claim that f(m) must either be the first or last term of the arithmetic sequence
given by f(m), f(m + 1), · · · , f(m + n − 1), i.e. either f(m) = a or f(m) = a + (n − 1)d.
We show this by contradiction: Suppose that f(m) = a + kd for some 1 ≤ k ≤ n− 2. Then
as n ≥ 4 by compositeness, there must be two terms of the form a+ id, a+ (i+ 1)d for some
1 ≤ i ≤ n− 2 among the n terms

f(m + 1), f(m + 2), . . . , f(m + n).

Hence, the common difference of the sequence given by these n terms is at most d. But
then some two of these terms must be equal to a + (k − 1)d and a + (k + 1)d, which in
turn means that f(m + n) = a + kd. However, this contradicts our earlier assumption that
f(m) 6= f(m + n) for every m, so we either have f(m) = a or f(m) = a + (n− 1)d.

Without loss of generality, let f(m) = a. Then since f(m + n) 6= a and both

f(m), f(m + 1), · · · , f(m + n− 1),

f(m + 1), f(m + 2), · · · , f(m + n)

form arithmetic sequences in some order with common difference d, it follows that f(m+n) =
a + nd, completing the proof of our claim. Note that consequently, f(m + 1), f(m +
2), · · · , f(m + n− 1) are integers between f(m) and f(m + n) exclusive.
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By our work above, we know there exist some integers a, d such that f(0) = a, f(n) =
a + nd, and

f(0), f(1), f(2), · · · , f(n)

form an arithmetic sequence with common difference d in some order; let this sequence be
(ai). Our work also tells us that

f(1), f(2), · · · , f(n + 1)

form an arithmetic sequence in some order with f(1), f(n+ 1) being the first and last terms
in some order; let this sequence be (bi). Since (ai) has common difference d, it follows that
(bi) must have common difference d as well. Also, since f(m) 6= f(m + n) for every integer
m, we either have f(1) = a+ d or f(1) = a+ (n+ 1)d, but we know that a+ (n+ 1)d is not
a term of (ai), so f(1) = a + d and f(n + 1) = a + (n + 1)d. Then, by successively applying
this reasoning to the sequences

f(2), f(3), · · · , f(n + 2),

f(3), f(4), · · · , f(n + 3),

f(4), f(5), · · · , f(n + 4),

we see that f(2) = a + 2d, f(3) = a + 3d, and f(4) = a + 4d. Continuing this way, we see
that f(m) = a + md for all m ≥ 0. Similarly, by successively applying this reasoning to the
sequences

f(−1), f(0), · · · , f(n− 1),

f(−2), f(−1), · · · , f(n− 2),

f(−3), f(−2), · · · , f(n− 3),

we see that f(−1) = a − d, f(−2) = a − 2d, and f(−3) = a − 3d. Continuing this way, we
see that f(m) = a + md for all m ≤ 0. This shows that f is linear.

In conclusion, we have shown the following:

• If n ≥ 3 is prime, there exists a nonlinear function f mapping n-term arithmetic
progressions to n-term arithmetic progressions.

• If n ≥ 3 is composite and there exists an m such that f(m) = f(m + n), then any
function mapping n-term arithmetic progressions to n-term arithmetic progressions
must be constant and hence linear.

• If n ≥ 3 is composite and f(m) 6= f(m+n) for every m, then any function f mapping
n-term arithmetic progressions to n-term arithmetic progressions must map any n+ 1
consecutive integers to an arithmetic sequence, with the first and last of these integers
mapping to the first and last terms of the sequence in some order. This, in turn, implies
that f is a linear function.
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This shows that an integer n ≥ 3 has the desired property if and only if it is composite.
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