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1/2/26. The net of 20 triangles shown to the right can be folded to
form a regular icosahedron. Inside each of the triangular faces,
write a number from 1 to 20 with each number used exactly once.
Any pair of numbers that are consecutive must be written on
faces sharing an edge in the folded icosahedron, and additionally,
1 and 20 must also be on faces sharing an edge. Some numbers
have been given to you.

You do not need to prove that your answer is the only one
possible; you merely need to find an answer that satisfies the
constraints above. (Note: In any other USAMTS problem, you
need to provide a full proof. Only in this problem is an answer
without justification acceptable.)

Solution
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2/2/26. Let a, b, c, x, y be positive real numbers such that

ax + by ≤ bx + cy ≤ cx + ay.

Prove that b ≤ c.

Solution

The first inequality is equivalent to

(b− c)y ≤ (b− a)x,

and the second inequality is equivalent to

(b− c)x ≤ (a− c)y.

If b > c, then the left sides of the two inequalities above are positive, so the right sides are
positive as well. In particular, this means that b− a > 0 and a− c > 0. But then b > a > c,
giving ax > cx and by > ay. Adding these last two inequalities gives ax+by > cx+ay, which
contradicts the relation between the first and third expressions in the original inequality
chain.

Thus b ≤ c.
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3/2/26. Let P be a square pyramid whose base consists of the four vertices (0, 0, 0), (3, 0, 0),
(3, 3, 0), and (0, 3, 0), and whose apex is the point (1, 1, 3). Let Q be a square pyramid whose
base is the same as the base of P , and whose apex is the point (2, 2, 3). Find the volume of
the intersection of the interiors of P and Q.

Solution

Consider the cross-sections of P and Q given by the plane z = c for some 0 ≤ c ≤ 3.

The cross-section of P with z = c is the square with vertices:( c
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The cross-section of Q with z = c is the square with vertices:(
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Thus the point (x, y, z) is in the interior of both P and Q if and only if:

z
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3
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Combining these conditions gives

2z

3
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3
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3
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3
.

This is equivalent to (x, y, z) lying in the interior of a pyramid with the same base as P and

Q, but with apex

(
3

2
,
3

2
,
9

4

)
. (We note that the two inequalities above only have solutions

for z <
9

4
, and are symmetric in x and y.) This pyramid has a base of area 9 and a height

of
9

4
, so its volume is

1

3
bh =

1

3
(9)

(
9

4

)
=

27

4
.
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4/2/26. A point P in the interior of a convex polyhedron in Euclidean space is called a
pivot point of the polyhedron if every line through P contains exactly 0 or 2 vertices of the
polyhedron. Determine, with proof, the maximum number of pivot points that a polyhedron
can contain.

Solution

A polyhedron can contain 1 pivot point: for example, the center of a cube is a pivot point.

However, we claim that a convex polyhedron cannot contain more than one pivot point.

First, we prove the following:

Lemma: Let X be a pivot point of a convex polyhedron P , and let Γ be any plane containing
X. Then there are an equal number of vertices in the two half-spaces determined by Γ.

Proof: Let f be a mapping from the set of vertices of P to itself, defined by setting f(A) to

be the unique vertex of P , other than A, on the line
←→
AX. (This vertex must exist, and be

uniquely determined, by the definition of a pivot point.) Note that f is its own inverse, so
it is a bijection of the vertices of P .

If A is a vertex of P , then the points between X and A are all interior to P by convexity.
Hence, f(A) cannot lie between X and A. Symmetrically, A cannot lie between X and f(A).
Therefore X lies between A and f(A). Thus the segment Af(A) must either lie on or cross
Γ. Therefore, f establishes a 1-1 correspondence between the vertices in one half-space and
the vertices in the other half-space, and thus there are an equal number of them. 2

Now we can prove our claim. Suppose, for the sake of contradiction, that there exists a
convex polyhedron P that contains two distinct pivot points X and Y . Choose distinct
parallel planes ΓX through X and ΓY through Y such that ΓX contains at least one vertex
of P . Let x and y be the number of vertices of P on ΓX and ΓY , respectively, and note that
by construction x > 0. Also let z be the number of vertices of P that lie between ΓX and
ΓY , and let x′ and y′ (respectively) be the number of vertices in the half-space lying on the
side of ΓX (respectively ΓY ) that does not contain ΓY (respectively ΓX). The diagram below
shows a side view of the planes ΓX and ΓY , along with the number of points on, between,
and to either side of the planes.

x′ points
x points (x > 0) Γx

z points
y points Γy

y′ points
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Then by the Lemma, we have

x′ = z + y + y′,

y′ = z + x + x′.

Adding these equations and canceling x′ + y′ from both sides gives

0 = 2z + x + y.

However, x is positive and z and y are nonnegative, giving the contradiction.

Thus, a convex polyhedron can contain at most 1 pivot point.
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5/2/26. Find the smallest positive integer n that satisfies the following: We can color each
positive integer with one of n colors such that the equation

w + 6x = 2y + 3z

has no solutions in positive integers with all of w, x, y, z the same color. (Note that w, x, y, z
need not be distinct: for example, 5 and 7 must be different colors because (w, x, y, z) =
(5, 5, 7, 7) is a solution to the equation.)

Solution

The minimum number of colors is 4.

First, we show that 4 colors is achievable. We color every positive integer with one of four
colors according to its base-3 representation, as follows:

Number of terminating 0’s Right-most nonzero digit
in base-3 representation in base-3 representation Color

even 1 red
even 2 blue
odd 1 green
odd 2 yellow

We show that, using the above coloring, there are no solutions of our equation in which all
four variables are of the same color. Assume this coloring does admit a solution. If there is a
blue solution (w, x, y, z), then the quadruple (2w, 2x, 2y, 2z) is red and is also a solution. If
there exists a green solution (w, x, y, z), then (3w, 3x, 3y, 3z) is a red solution. If there exists
a yellow solution (w, x, y, z) then (6w, 6x, 6y, 6z) is a red solution. Therefore if there is any
solution in this coloring then there is a red solution. We need only prove that this coloring
admits no red solutions.

If we are given a red solution (w, x, y, z), then each variable ends in one of 00, 01, 11, or 21
in base 3, and so each variable is congruent to 0, 1, 4, or 7 (mod 9). The values that w + 6x
can take on are summarized in the following table (with values of w along the top and values
of x along the side):

0 1 4 7
0 0 1 4 7
1 6 7 1 4
4 6 7 1 4
7 6 7 1 4

The values that 2y + 3z can take on are summarized in the following table (with values of y
along the top and values of z along the side):
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0 1 4 7
0 0 2 8 5
1 3 5 2 8
4 3 5 2 8
7 3 5 2 8

Therefore w + 6x is congruent to 0, 1, 4, 6, or 7 (mod 9). Likewise, 2y + 3z is congruent
to 0, 2, 3, 5, or 8 (mod 9). The only way to satisfy w + 6x = 2y + 3z is for both to be
congruent to 0, meaning all four of (w, x, y, z) are multiples of 9.

The contradiction is quick from here. Let (w, x, y, z) be some red solution that minimizes w.
Since each variable is a multiple of 9, dividing by 9 gives us a new solution which is still red
(because we have removed an even number of terminating 0s), contradicting the minimality
of w.

Now we show that coloring the positive integers using 3 (or fewer) colors is insufficient. Note
that for any positive integer k, the 4-tuple (2k, k, k, 2k) is a solution to the equation, as are
the 4-tuples (3k, k, 3k, k) and (3k, 2k, 3k, 3k). Thus, k, 2k and 3k must all be different colors,
which shows that at least 3 colors are necessary.

Suppose we have only 3 colors (red, blue, green). Without loss of generality, since {1, 2, 3}
must all be different colors, we can color 1 red, 2 blue, and 3 green. Then since {2, 4, 6} and
{3, 6, 9} must each be all different colors, 6 must be a different color than both 2 and 3, so
6 must be red, which makes 4 green and 9 blue.

Below is a chart showing the colors so far:

1 2 3 4 5 6 7 8 9
R B G G R B

Next, note that {4, 8, 12} and {6, 12, 18} must each be all different colors. In particular, 12
must be a different color than both 4 and 6, so 12 must be blue. Then, 8 must be different
than both 4 and 12, so 8 must be red.

1 2 3 4 5 6 7 8 9 10 11 12
R B G G R R B B

But now, we are not able to color 5, because:

• If 5 is red, then (1, 5, 8, 5) is an all-red solution to the equation.

• If 5 is green, then (5, 3, 4, 5) is an all-green solution to the equation.

• If 5 is blue, then (9, 5, 12, 5) is an all-blue solution to the equation.

Therefore, we cannot color the integers using just 3 (or fewer) colors.
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