
Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 2 Solutions

Year 23 — Academic Year 2011–2012
www.usamts.org

1/2/23.

Find all the ways of placing the integers 1, 2, 3, . . . , 16 in the boxes below, such that
each integer appears in exactly one box, and the sum of every pair of neighboring integers
is a perfect square.

8
1

15

10

6

3

13

12
4

5

11

14

2

7

9

16
First, we construct a graph with 16 vertices, where each

vertex corresponds to one of the integers from 1 through
16, and two vertices are joined by an edge if the sum of the
integers corresponding to the vertices is a perfect square.
This gives us the graph to the right.

A solution to this problem corresponds to a path in
this graph that passes through every vertex exactly once
(also known as a Hamiltonian path). The vertices corre-
sponding to the integers 8 and 16 have only one edge, so
the path must start at the vertex labelled 8 and end at
the vertex labelled 16, or vice versa.

If the first number is 8, then the next number must be 1. We then have two choices for
the number after 1, namely 3 and 15. If the number after 1 is 3, then the path cannot reach
the vertex labelled 15 (because the last number must be 16), so the number after 1 must be
15, and then all numbers after that are uniquely determined. This gives us the first solution
shown below.

If the first number is 16, then the next numbers must be 9, 7, and so on, until 3. We
then have two choices for the number after 3, namely 1 and 6. If the number after 3 is 1,
then the path cannot reach the vertex labelled 6 (because the last number must be 8), so the
number after 3 must be 6, and then all numbers after that are uniquely determined. This
gives us the second solution shown below.

8

8

1

1

15

15

10

10

6

6

3

3

13

13

12

12

4

4

5

5

11

11

14

14

2

2

7

7

9

9

16

16
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2/2/23.

Four siblings are sitting down to eat some mashed potatoes for lunch: Ethan has 1 ounce
of mashed potatoes, Macey has 2 ounces, Liana has 4 ounces, and Samuel has 8 ounces. This
is not fair. A blend consists of choosing any two children at random, combining their plates
of mashed potatoes, and then giving each of those two children half of the combination.
After the children’s father performs four blends consecutively, what is the probability that
the four children will all have the same amount of mashed potatoes?

To see how all four children can end up with the same amount of mashed potatoes after
four blends, we start with the final amounts and work backwards. The total amount of
mashed potatoes at the start, in ounces, is 1 + 2 + 4 + 8 = 15. This total never changes, so
at the end, each child must have 15

4
ounces of mashed potatoes.

We now consider the blends in reverse order. It is possible that the father kept blending
after everyone reached equal amounts of 15

4
, but at some point, the father must have blended

two different amounts to produce two equal amounts of 15
4

. Let these two different amounts
be 15

4
+x and 15

4
−x, where x is a positive real number. So at this point, the amounts among

the children are 15
4

, 15
4

, 15
4

+ x, and 15
4
− x.

We continue to consider the blends in reverse order. A blend always produces two equal
amounts, and the only two equal amounts that we have are 15

4
and 15

4
. Therefore, at some

point, the father must have blended another two different amounts to produce two equal
amounts of 15

4
. Let these two different amounts be 15

4
+ y and 15

4
− y, where y is a positive

real number. At this point, the amounts among the children are 15
4

+ x, 15
4
− x, 15

4
+ y, and

15
4
− y.

Not all these amounts can be integers (for example, it is impossible for both 15
4

+ x and
15
4
−x to be integers), so in particular, these amounts cannot be the original amounts of 1, 2,

4, and 8. This means that further blends are required to get to these amounts. However, a
blend always produces two equal amounts. The only way that there are two equal amounts
among 15

4
+ x, 15

4
− x, 15

4
+ y, and 15

4
− y is if x = y.

Hence, our amounts are now 15
4

+ x, 15
4

+ x, 15
4
− x, and 15

4
− x. Since a blend always

produces two equal amounts, we see that at some point, the father performed a blend to
produce two equal amounts of 15

4
+ x, and another blend to produce two equal amounts of

15
4
− x. We have shown that the following four blends are required:

(A) A blend to produce two equal amounts of 15
4

+ x.

(B) A blend to produce two equal amounts of 15
4
− x.

(C) Blending an amount of 15
4

+ x and an amount of 15
4
− x to produce two equal amounts
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of 15
4

.

(D) Blending another amount of 15
4

+x and another amount of 15
4
−x to produce two equal

amounts of 15
4

.

The father performs a total of four blends, so these must be the only blends.

Blends (A) and (B) must come before blends (C) and (D). After blends (A) and (B),
the amounts are 15

4
+ x, 15

4
+ x, 15

4
− x, and 15

4
− x. After any first blend, the amounts are

always of the form a, a, b, and c, where a, b, and c are distinct. (We know that a, b, and
c are distinct because among the original amounts of 1, 2, 4, and 8, no amount is equal to
the average of any other two amounts.) The only way to get two pairs of equal amounts
after the next blend is to blend the amounts of b and c. The probability that this occurs is
1

(4
2)

= 1
6
.

We then have the amounts 15
4

+ x, 15
4

+ x, 15
4
− x, and 15

4
− x. The next blend must

blend an amount of 15
4

+ x and an amount of 15
4
− x. The probability that this occurs is

2·2
(4
2)

= 4
6

= 2
3
.

Finally, we have the amounts 15
4

, 15
4

, 15
4

+ x, and 15
4
− x. The next blend must blend the

amounts of 15
4

+ x and 15
4
− x. The probability that this occurs is 1

(4
2)

= 1
6
.

Therefore, the probability that after four blends, all four children have the same amount
of mashed potatoes is

1

6
· 2

3
· 1

6
=

2

108
=

1

54
.
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3/2/23.

Find all integers b such that there exists a positive real number x with

1

b
=

1

b2xc +
1

b5xc .

Here byc denotes the greatest integer that is less than or equal to y.

We claim that the only such positive integers b are 3 and all positive multiples of 10.

Let n = bxc. Then there exists a unique integer r, 0 ≤ r ≤ 9, such that

n+
r

10
≤ x < n+

r + 1

10
.

For each such value of r, we can express b2xc and b5xc in terms of n.

r b2xc b5xc
0 2n 5n
1 2n 5n
2 2n 5n+ 1
3 2n 5n+ 1
4 2n 5n+ 2
5 2n+ 1 5n+ 2
6 2n+ 1 5n+ 3
7 2n+ 1 5n+ 3
8 2n+ 1 5n+ 4
9 2n+ 1 5n+ 4

Solving for b in the given equation, we find

b =
b2xcb5xc
b2xc+ b5xc .

We divide into cases.

Case 1: r = 0 or 1. In this case,

b =
2n · 5n
2n+ 5n

=
10n

7
.

If b is an integer, then n must be a multiple of 7. Let n = 7k. Then b = 10k, so b can take
on all positive multiples of 10.
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Case 2: r = 2 or 3. In this case,

b =
2n(5n+ 1)

2n+ (5n+ 1)
=

10n2 + 2n

7n+ 1
.

If b is an integer, then

7b− 10n =
70n2 + 14n

7n+ 1
− 10n =

4n

7n+ 1

must be an integer. But 0 < 4n
7n+1

< 1, so b cannot be an integer.

Case 3: r = 4. In this case,

b =
2n(5n+ 2)

2n+ (5n+ 2)
=

10n2 + 4n

7n+ 2
.

If b is an integer, then

7b− (10n+ 1) =
70n2 + 28n

7n+ 2
− (10n+ 1) =

n− 2

7n+ 2
.

must be an integer. If n = 2, then b = 3.

If n = 1, then b = 14/9, which is not an integer, and if n ≥ 3, then 0 < n−2
7n+2

< 1, so b is
not an integer.

Case 4: r = 5. In this case,

b =
(2n+ 1)(5n+ 2)

(2n+ 1) + (5n+ 2)
=

10n2 + 9n+ 2

7n+ 3
.

If b is an integer, then

7b− (10n+ 4) =
70n2 + 63n+ 14

7n+ 3
− (10n+ 4) =

5n+ 2

7n+ 2
.

must be an integer. But 0 < 5n+2
7n+2

< 1, so b cannot be an integer.

Case 5: r = 6 or 7. In this case,

b =
(2n+ 1)(5n+ 3)

(2n+ 1) + (5n+ 3)
=

10n2 + 11n+ 3

7n+ 4
.

If b is an integer, then

7b− (10n+ 5) =
70n2 + 77n+ 21

7n+ 4
− (10n+ 5) =

2n+ 1

7n+ 2
.

must be an integer. But 0 < 2n+1
7n+2

< 1, so b cannot be an integer.
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Case 6: r = 8 or 9. In this case,

b =
(2n+ 1)(5n+ 4)

(2n+ 1) + (5n+ 4)
=

10n2 + 13n+ 4

7n+ 5
.

If b is an integer, then

7b− (10n+ 5) =
70n2 + 91n+ 28

7n+ 5
− (10n+ 5) =

6n+ 3

7n+ 5
.

must be an integer. But 0 < 6n+3
7n+5

< 1, so b cannot be an integer.

Therefore, the only possible values of b are 3 and all positive multiples of 10.
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4/2/23.

A luns with vertices X and Y is a region bounded by two circular arcs meeting at the
endpoints X and Y . Let A, B, and V be points such that ∠AV B = 75◦, AV =

√
2 and

BV =
√

3. Let L be the largest area luns with vertices A and B that does not intersect the

lines
←→
V A or

←→
V B in any points other than A and B. Define k as the area of L. Find the value

k

(1 +
√

3)2
.

A

BV
75◦

We first consider the question of which circular arcs from A to B lie
entirely inside the region bounded by the 75◦ angle to the left. Any such
arc is the arc of a circle with center equidistant from A and B. There-
fore the locus of possible centers for these arcs lie on the perpendicular
bisector, `, of the segment AB.

A

BV

`

O

If we choose a center for our circle, the circle defines two
different arcs, one to the “left” of AB and one to the “right”
or AB. For the sake of this problem, we will define left as

pertaining to the half-plane bounded by
←→
AB containing V

and right as pertaining to the half-plane bounded by
←→
AB

not containing V .

For any given center, we must explore whether either

or both of these arcs intersects either the line
←→
V A or the

line
←→
V B. Let O be the center of an arbitrary circle that

intersects
←→
V B at B. (Note that O and B uniquely determine

the circle.) If this circle is tangent to
←→
V B, then ∠V BO = 90◦. If the circle intersects

←→
V B

to the left of B then ∠V BO < 90◦. If the circle intersects
←→
V B to the right of B then

∠V BO > 90◦.
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A

BV

`

XB

In the figure to the left, we’ve drawn the lines
←→
V B and `.

The point XB is the intersection of ` and the perpendicular

to
←→
V B at B. The point XB is the center of the black circle

and the black circle intersects
←→
V B only at B. In particular,

both arcs from A to B in this circle lie above the line
←→
V B,

(excepting the point B).

The green region of ` is the set of points on ` to the right

of
←−→
XBB. These are the centers of circles that intersect

←→
V B

to the right of B. For such a circle, only the left arc from A

to B lies above
←→
V B. The blue region of ` is the set of points

on ` to the left of
←−→
XBB. These are the centers of the circles that intersect

←→
V B to the left of

B. For such a circle, only the right arc from A to B lies above
←→
V B. Notice that every valid

arc lies inside the circle centered at XB containing the point B.

A

BV

`

XA

We consider an identical construction for the line
←→
V A in

the figure to the right. The point XA is the center of the
unique circle for which both the left and right arcs from A to

B do not intersect
←→
V A. The green points to the right of XA

are the centers of the circles for which the left arc from A to
B does not intersect

←→
V A. The blue points to the left of XA

are those points for which the right arc does not intersect←→
V A. Notice that all of these arcs are in the interior of the
circle centered at XA.

A

BV

`

XA

XB

Next we combine these figures. We drop both perpendic-
ulars through A and B. Since V B > V A, the point XB is to
the right of XA. If the center of a circle lies on XAXB, then

the left arc of the circle intersects
←→
V B twice and the right

arc of the circle intersects
←→
V A twice. Therefore neither arc

is an arc of a luns.

If the center of a circle lies to the right of XB on ` (colored
green here), then the left arc of this circle does not intersect
either line except at A and B. If the center of a circle lies
to the left of XA (colored blue), then the right arc of the

circle does not intersect either line, except at A and B. Therefore the green region of `
parameterizes the set of all valid left arcs and the blue region of ` parameterizes all of the
valid right arcs.

Consider the black luns in this figure. It has left arc with center XB and right arc with
center XA. This figure is a luns, and every valid luns is bounded by a pair of arcs that
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lie inside this figure. Therefore every valid luns is a subset of this luns and this luns has
the maximal area of any luns satisfying the assumptions. Now we compute this area, by
computing the sum of the areas of the green region and the blue region.

Define the lengths a = V B =
√

3, b = V A =
√

2, and c = AB. The law of cosines gives

c2 = (V A)2 + (V B)2 − 2(V A)(V B) cos 75◦

= 2 + 3− 2
√

2 ·
√

3 ·
√

6−
√

2

4

= 5− 2
√

6 ·
√

6−
√

2

4

= 5− 6− 2
√

3

2

= 2 +
√

3.

Notice also that, since
(1 +

√
3)2 = 4 + 2

√
3 = 2c2,

and 1 +
√

3 is positive,

c =
1 +
√

3√
2

.

A

BV

45◦

60◦

75◦

√
2

√
3

1+
√
3√

2

Finally, we apply the law of sines to find the other angles in V AB.
Since

c

sin∠V
=

1+
√
3√

2√
6+
√
2

4

=
4(1 +

√
3)

2
√

3 + 2
= 2,

we know that

2 =
b

sin∠B
=

√
2

sin∠B
,

so sin∠B = 1√
2

and ∠V BA = 45◦. Subtracting gives ∠V AB = 60◦.

A

BV

XB

First we compute the area of the green region. Since ∠ABV = 45◦

and AXB = BXB, the triangle AXBB is right isosceles. The sector
containing the green region is a quarter of a circle of radius c√

2
, so the

entire sector has area 1
4
· π ·

(
c√
2

)2

= πc2

8
. To find the green region we

subtract the area of the triangle to get

πc2

8
− c2

4
=
π − 2

8
· c2.
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A

BV

XA

Next we compute the area of the blue region. Since triangle AXAB
is isosceles and ∠V AB = 60◦, we get that ∠XA = 120◦. Therefore the
blue region is the union of 2

3
of the circle with center XA plus the area

of triangle AXAB. The triangle has altitude c
2
√
3

with respect to base
AB and the radius of this circle is c√

3
. Therefore the total area of the

blue region is
2

3
· π ·

(
c√
3

)2

+
1

2
· c · c

2
√

3
=

3
√

3 + 8π

36
· c2.

This makes the total area of the luns

k =
π − 2

8
· c2 +

3
√

3 + 8π

36
· c2 =

6
√

3 + 25π − 18

72
· c2.

Since c2 = (1+
√
3)2

2
,

k

(1 +
√

3)2
=

k

2c2
=

6
√

3 + 25π − 18

144
.
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5/2/23.

Miss Levans has 169 students in her history class and wants to seat them all in a 13× 13
grid of desks. Each desk is placed at a different vertex of a 12 meter by 12 meter square grid
of points she has marked on the floor. The distance between neighboring vertices is exactly
1 meter.

Each student has at most three best friends in the class. Best-friendship is mutual: if
Lisa is one of Shannon’s best friends, then Shannon is also one of Lisa’s best friends. Miss
Levans knows that if any two best friends sit at points that are 3 meters or less from each
other then they will be disruptive and nobody will learn any history. And that is bad.

Prove that Miss Levans can indeed place all 169 students in her class without any such
disruptive pairs.

There are only a finite number of ways of arranging the 169 students among the 169
desks. Consider the arrangement that has the least number of disruptive pairs. We claim
that this minimal arrangement has no disruptive pairs.

For the sake of contradiction, suppose that there is a disruptive pair in this arrangement.
We say that two students are neighbors if they sit within 3 meters of each other. As shown
below, every student has at most 28 neighbors.

Let students S and T be a disruptive pair, which means they are best friends and neigh-
bors. Let A be the set of all best friends of neighbors of S, so |A| ≤ 3 · 28 = 84. Let B be
the set of all neighbors of best friends of S, so |B| ≤ 28 · 3 = 84. Note that S is in both A
and B, so there are at most 83 + 83 = 166 members in A ∪ B other than S. But there are
a total of 169 students, so there must be at least 169− 1− 166 = 2 students, other than S,
who are not in A or B.
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Let S ′ be one of these students, other than T . We swap the locations of students S and
S ′. This breaks up the disruptive pair S and T . Since S ′ is not in A, S ′ is not best friends
with any of his neighbors in his new location (where S originally was), and since S ′ is not
in B, S is not best friends with any of his neighbors in his new location (where S ′ originally
was) either. So by swapping S and S ′, we have reduced the number of disruptive pairs by
at least one. We now have an arrangement with less disruptive pairs, which contradicts
the minimality assumption. Therefore, in the minimal arrangement, there are no disruptive
pairs, so such a seating is possible.

Credits: Problem 4/2/23 is based on a proposal by Sandor Lehoczyk.
Problem 5/2/23 is based on a problem from the Bulgarian journal Matematika.
All other problems and solutions by USAMTS staff.
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