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1/2/22. Show that there is a unique way to place positive integers in the grid
to the right following these three rules:

1. Each entry in the top row is one digit.

2. Each entry in any row below the top row is the sum of the two
entries immediately above it.

3. Each pair of same-color squares contain the same integer. These five distinct integers
are used exactly twice and no other integer is used more than once.

α α β β

γ

γ
δ

δ

ε

ε

x y zLabel additional squares as shown at right. Comparing the two
pink boxes, we have

δ = α + 3β = y + z ≤ 17,

since y and z are distinct and each a single digit. Thus β ≤ 5. Next,
comparing the two orange boxes, we see that

γ = x+ 3α = α + β,

so x = β − 2α. But β ≤ 5, so in order to have x > 0 we must have α equal to 1 or 2. The
only possibilities are thus

(α, β) ∈ {(1, 3), (1, 4), (1, 5), (2, 5)}.

The first of these gives x = 1, which is disallowed since then x and α are not distinct. The
second gives x = 2, but this is disallowed because then the box directly below the two blue
boxes would also be 2. So we conclude that β = 5 and that (α, x) ∈ {(1, 3), (2, 1)}.

If we attempt to use α = 2 and x = 1, we can sum downwards to get the grid on the left
below. However, we then also have 46 in the green box to the right of the box with 28, and
subtracting upwards gives the grid on the right below; this makes y = 14 in the top row,
which violates condition 1. So this case cannot occur.

1 2 2 5 5 y z

3 4 7 10

7 11 17

18 28

46

1 2 2 5 5 14 z

3 4 7 10 19

7 11 17 29

18 28 46

46
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The only remaining possibility is the case α = 1, x = 3, which will fill in at left below.
Summing downwards gives ε = 38. We can place 38 in the other green box and subtract
upwards, and then complete the picture as shown at right below. This completed picture
satisfies all the requirements, and it is the only possibility.

3 1 1 5 5 y z

4 2 6 10

6 8 16

14 24

38

3 1 1 5 5 7 9

4 2 6 10 12 16

6 8 16 22 28

14 24 38 50

38 62 88

100 150

250
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2/2/22. A sequence is called tworrific if its first term is 1 and the sum of every pair of
consecutive terms is a positive power of 2. One example of a tworrific sequence is 1, 7, −5,
7, 57.

(a) Find the shortest possible length of a tworrific sequence that contains the term 2011.

(b) Find the number of tworrific sequences that contain the term 2011 and have this
shortest possible length.

(a) We claim that the shortest possible length of a tworrific sequence that contains the
term 2011 is 5. First, the sequence

1, 7,−5, 37, 2011

contains the term 2011 and has length 5. The sums of pairs of consecutive terms are 1+7 = 8,
7 + (−5) = 2, (−5) + 37 = 32, and 37 + 2011 = 2048, so this sequence is tworrific.

Let
a1, a2, a3, . . . , ak

be a tworrific sequence of length k ending with the term 2011, so a1 = 1 and ak = 2011.
Then

a1 + a2 = 2e1 ,

a2 + a3 = 2e2 ,

. . . ,

ak−1 + ak = 2ek−1

for some nonnegative integers e1, e2, . . . , ek, so

ak = 2ek−1 − ak−1
= 2ek−1 − 2ek−2 + ak−2

= 2ek−1 − 2ek−2 + 2ek−3 − ak−3
= · · ·
= 2ek−1 − 2ek−2 + 2ek−3 − · · ·+ (−1)k2e1 + (−1)k+1a1

= 2ek−1 − 2ek−2 + 2ek−3 − · · ·+ (−1)k2e1 + (−1)k+1.

We claim that that there are no tworrific sequences of length 1, 2, 3, or 4 that contain the
term 2011.

Case 1: The tworrific sequence has length 1.
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This case is trivial, because the first term is always 1.

Case 2: The tworrific sequence has length 2.

In this case, we seek a nonnegative integer e1 such that

2e1 − 1 = 2011.

Then 2e1 = 2012. But 2012 = 22 · 503 is not a power of 2, so there is no such nonnegative
integer e1.

Case 3: The tworrific sequence has length 3.

In this case, we seek nonnegative integers e1 and e2 such that

2e2 − 2e1 + 1 = 2011.

Then
2e2 − 2e1 = 2010.

Clearly e2 > e1, so we can write

2e1(2e2−e1 − 1) = 2010 = 2 · 1005.

The factor 2e1 is a power of 2, and the factor 2e2−e1 − 1 is odd, so we must have 2e2−e1 − 1 =
1005, which means 2e2−e1 = 1006. But 1006 = 2 · 1003 is not a power of 2, so there are no
such nonnegative integers e1 and e2.

Case 4: The tworrific sequence has length 4.

In this case, we seek nonnegative integers e1, e2, and e3 such that

2e3 − 2e2 + 2e1 − 1 = 2011.

Then
2e3 + 2e1 = 2e2 + 2012.

Note that a nonnegative integer (that is at least 2) can be written in the form 2e3 + 2e1 if
and only if it has exactly one or two 1s in its binary representation. (We get one 1 if e3 = e1,
which makes 2e3 + 2e1 = 2e1+1.) Thus, we seek a nonnegative integer e2 such that the binary
representation of 2e2 + 2012 has one or two 1s.

But the binary representation of 2012 is

2012 = 111110111002.
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It is easy to check that no value 0 ≤ e2 ≤ 10 will work, and for e2 ≥ 11, the binary
representation of 2e2 + 2012 is

1 00 . . . 0︸ ︷︷ ︸
e2−11 0s

111110111002.

Hence, there are no such nonnegative integers e1, e2, and e3.

Therefore, the shortest possible length of a tworrific sequence that contains the term 2011
is 5.

(b) Finding all tworrific sequences of length 5 that contain the term 2011 is equivalent
to finding all nonnegative integers e4, e3, e2, and e1 such that

2e4 − 2e3 + 2e2 − 2e1 + 1 = 2011,

or
2e4 + 2e2 = 2e3 + 2e1 + 2010.

Hence, the binary representation of 2e3 + 2e1 + 2010 must have exactly one or two 1s.

The binary representation of 2010 is

2010 = 111110110102.

Checking all values where 0 ≤ e1, e3 ≤ 10, we find that the binary representation of 2e3 +
2e1 + 2010 has exactly one or two 1s only for (e1, e3) = (3, 5) and (5, 3), for which

2e3 + 2e1 + 2010 = 1000000000102.

Hence, (e2, e4) = (1, 11) or (11, 1).

For e1, e3 ≥ 11, the binary representation of 2e3 + 2e1 + 2010 is

1 00 . . . 0︸ ︷︷ ︸
e1−10 0s

111110110102

if e1 = e3, and
1 00 . . . 0︸ ︷︷ ︸
e1−e3−1 0s

1 00 . . . 0︸ ︷︷ ︸
e3−11 0s

111110110102

if e1 > e3 (and similarly for e1 < e3).

Hence, there are four quadruples of nonnegative integers (e1, e2, e3, e4), namely (3, 1, 5, 11),
(3, 11, 5, 1), (5, 1, 3, 11), and (5, 11, 3, 1). This gives us the four tworiffic sequences

1, 7,−5, 37, 2011,

1, 7, 2041,−2009, 2011,

1, 31,−29, 37, 2011,

1, 31, 2017,−2009, 2011.
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3/2/22. Richard, six of his friends, and a Gortha beast are standing at different vertices of a
cube-shaped planet. Richard has a potato and is a neighbor to the Gortha. On each turn,
whoever has the potato throws it at random to one of his three neighbors. If the Gortha
gets the potato he eats it. What is the probability that Richard is the one who feeds the
Gortha?

R G
p

q

q

r

r

s
1
3

The planet is shown at right, where R is Richard and G is the
Gortha. Let p be the probability that Richard feeds the Gortha
given that he is holding the potato. For each non-Gortha neighbor
of Richard, let q be the probability that Richard feeds the Gortha
given that the neighbor is holding the potato. (By symmetry, it
is the same probability for each neighbor.) For each non-Richard
neighbor of the Gortha, let r be the probability that Richard feeds
the Gortha given that the neighbor is holding the potato. (Again,
by symmetry, it is the same probability for each of the Gortha’s
other neighbors.) Finally, let s be the probability that Richard
feeds the Gortha given that the person opposite from Richard is holding the potato. Note
also that if the person who is opposite the Gortha has the potato, then the probability that
Richard feeds the Gortha is 1

3
, by symmetry, since each of the Gortha’s three neighbors is

then equally likely to be the feeder. These probabilities are labeled on the diagram above.

When Richard has the potato, he has probability 1
3

of immediately feeding the Gortha,
and probability 2

3
of passing it to a neighbor. Therefore,

p =
1

3
+

2

3
q.

When one of Richard’s non-Gortha neighbors has the potato, she has probabilty 1
3

of throwing
the potato back to Richard, probability 1

3
of throwing the potato to one of the Gortha’s other

neighbors, and probability 1
3

of throwing the potato to the person opposite the Gortha.
Therefore,

q =
1

3
p+

1

3
r +

1

9
.

When one the Gortha’s other neighbors has the potato, he has probability 1
3

of feeding the
Gortha (in which case Richard does not feed the Gortha), probability 1

3
of throwing the

potato to one of Richard’s neighbors, and probability 1
3

of throwing the potato to the person
opposite Richard. Therefore,

r =
1

3
q +

1

3
s.

Finally, when the person opposite Richard has the potato, she has probability 2
3

of throwing
it to one of the Gortha’s non-Richard neighbors, and probability 1

3
of throwing it to the
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person opposite the Gortha. Therefore,

s =
2

3
r +

1

9
.

Thus we have the system of equations:

p =
1

3
+

2

3
q, (1)

q =
1

3
p+

1

3
r +

1

9
, (2)

r =
1

3
q +

1

3
s, (3)

s =
2

3
r +

1

9
. (4)

Substituting equation (4) into equation (3) gives:

p =
1

3
+

2

3
q, (5)

q =
1

3
p+

1

3
r +

1

9
, (6)

r =
1

3
q +

2

9
r +

1

27
. (7)

Equation (7) rearranges to give r = 3
7
q + 1

21
, so substituting this into (6) gives:

p =
1

3
+

2

3
q, (8)

q =
1

3
p+

1

7
q +

8

63
. (9)

Clearing denominators gives

3p = 1 + 2q, (10)

54q = 21p+ 8. (11)

Solving this system gives p = 7
12

and q = 3
8
, so the probability that Richard feeds the Gortha

is
7

12
.
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4/2/22. Let A, B, C, and D be points in the plane such that AD ‖ BC. Let I be the incenter of
4ABC and assume that I is also the orthocenter of4DBC. Show that AB+AC = 2BC.

Let a = BC, b = AC, and c = AB. Let s, r, and K denote the semiperimeter, inradius,
and area of triangle ABC, respectively. Let h be the common heights of triangles ABC and
DBC, with respect to base BC. Let T be the foot of the perpendicular from I to BC.

A D

B BC CT T

I I

Since I is the orthocenter of triangle DBC, ∠CDT = 90◦−∠DCB = ∠IBT , so triangles
IBT and CDT are similar. Hence,

CT

IT
=
DT

BT
.

Since BT is the tangent from B to the incircle of triangle ABC, BT = s − b. Similarly,
CT = s− c, so

s− c
r

=
h

s− b
.

Cross-multiplying, we get
(s− b)(s− c) = rh.

But r = K/s and h = 2K/a, so

(s− b)(s− c) =
2K2

as
,

or
as(s− b)(s− c) = 2K2.

By Heron’s formula, K2 = s(s− a)(s− b)(s− c), so

as(s− b)(s− c) = 2s(s− a)(s− b)(s− c).

Dividing both sides by s(s− b)(s− c), we get

a = 2(s− a) = 2s− 2a = b+ c− a,

so b+ c = 2a, as desired.
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5/2/22. Zara and Ada are playing a game. Ada begins by picking an integer from 1 to 2011
(inclusive). On each turn Zara tries to guess Ada’s number. Ada then tells Zara whether her
guess is too high, too low, or correct. If Zara’s guess is not correct, Ada adds or subtracts 1
from her number (always constructing a new number from 1 to 2011). Assuming Zara plays
optimally, what is the minimum number of turns she needs to guarantee that she will guess
Ada’s number?

Zara needs a minimum of 1008 moves to guarantee a win.

Before demonstrating the formal proof, let us sketch the algorithm that Zara should
follow. At each guess, we will assume that Ada reacts in a way so as to maximize the
number of guesses Zara will need.

1. Zara guesses 1006 (the middle number). Without loss of generality assume Ada says
“lower” (if she says “higher” the remaining strategy is essentially the same).

2. Before Ada changes her number, Ada’s number must be in the set {1, 2, . . . , n}, where
n = 1005 initially.

3. After Ada changes her number, Ada’s number must be in the set {1, 2, . . . , n+ 1}.

4. Zara guesses n.

5. If Ada says “lower”, then Ada’s number must be in the set {1, 2, . . . , n − 1} (before
she changes her number), so we go back to Step 2 with n reduced by 1.

6. If Ada says “higher”, then continue to step 7 below with m = n+ 1.

7. Before Ada changes her number, Ada’s number must be m.

8. After Ada changes her number, Ada’s number must be either m− 1 or m+ 1.

9. Zara guesses m+ 1. We assume this is the wrong guess (otherwise Zara wins immedi-
ately).

10. Ada’s number must be m− 1. If m− 1 > 1, go back to Step 7 (with m reduced by 1).

11. Ada’s number must be 1, so when she changes it, her new number must be 2.

12. Zara guesses 2 and wins.

Notice that the above algorithm has four basic parts:

• The initial guess of 1006.
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• A guess for each time we loop through steps 2-5. Each guess (except the last guess in
the loop) reduces n by 1, where n starts at 1005.

• A guess for each time we loop through steps 7-10. Each guess (except the last guess
in the loop) reduces m by 1, where m starts at n+ 1 for whatever value of n causes us
to end the first loop

• The final guess of 2, which occurs after we have reduced to m = 2.

We run the two loops for a total of 1006 guesses, as we reduce from n = 1005 to m = 2:
each guess decreases the current variable (n or m by 1), except for the guess that shifts to
m = n+1 somewhere in the middle, and the final guess of the second loop at m = 2. Adding
these 1006 guesses to the start and end guess gives us our total of 1008 guesses necessary.

Now we prove that this algorithm is the best we can do.

Let X = {1, 2, 3, . . . , 2011}. Call a subset S ⊆ X an interval if it is of the form

S = {n | a ≤ n ≤ b}

for some a, b ∈ X with a ≤ b. We will denote this set as S = [a, b] (using the same notation
as we would use for an interval on the real line). For any n ∈ X, let

e(n) = min{x, 2012− x}

denote the distance from n from the boundary of X; that is, e(n) is the distance from n to
the closer of 0 or 2012. Note that e(1) = e(2011) = 1 and e(1006) = 1006.

For any nonempty subset S ⊆ X, define

E(S) =

{
e(n) if S = {n} (that is, if S is the single element n),

2 + max
n∈S

(e(n)) if S has more than 1 element.

(This value E will measure the least number of turns it takes for Zara to guess Ada’s number
from any of the sets At which interest us.)

Let t > 0 denote the turn (i.e. the number of guesses Zara has made). On each turn:

• Zara guesses an integer zt ∈ X. If zt is Ada’s number, the game is over; otherwise Ada
replies “higher” or “lower.”

• Zara gains information about Ada’s numbers. Let At denote the set of Ada’s possible
numbers before she adds or subtracts 1 to her number.

• Ada adds or subtract 1 to her number. Let Bt denote the set of Ada’s possible numbers
after she adds or subtracts 1 to her number.

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 1 Solutions

Year 22 — Academic Year 2010–2011
www.usamts.org

Note that if At is an interval with more than one element, then Bt is also an interval; in
particular if At = [a, b] then Bt = [a− 1, b+ 1]∩X. Also note that if Bt is an interval, then
either

At+1 = Bt ∩ {x ∈ X | x < zt}

or
At+1 = Bt ∩ {x ∈ X | x > zt}.

In either case At+1 is an interval. So, since B0 = X is an interval (that is, Ada’s number
could be anything at the beginning of the game), we have that At and Bt will always be
intervals until At becomes a set with a single element.

Lemma 1: If At is an interval with more than one element, then for any guess
zt Ada can reply so that E(At+1) ≥ E(At)− 1.

Proof of Lemma 1:

If 1006 ∈ At then 1005 ∈ At or 1007 ∈ At, and E(At) = 1008. Also note that
[1005, 1007] ⊆ Bt and at least one of 1004 and 1008 is also in Bt. Without loss of gen-
erality (by symmetry) we may assume Bt contains [1004, 1007]. Guessing anything other
zt = 1006 may result in [1005, 1006] or [1006, 1007] being a subset of At+1. In this case
E(At+1) = 1008 = E(At). Guessing zt = 1006 may result in [1004, 1005] ⊆ At+1. In this
case, E(At+1) = 1007 = E(At)− 1.

Otherwise we have 1006 6∈ At. Without loss of generality assume that At = [a, b] with
b < 1006, so that E(At) = b + 2. (The case where a > 1006 is symmetric.) Then Bt =
[a − 1, b + 1] (or [a, b + 1] if we have a = 1, but this does not affect our argument). If
zt is anything other than b or b + 1, then we may have [b, b + 1] ⊆ At+1, in which case
E(At+1) ≥ (b+ 1) + 2 = b+ 3 > E(At).

If zt = b+ 1 then (assuming this is not the correct guess) we have At+1 = [a− 1, b], and
then E(At+1) = b+ 2 = E(At).

If zt = b then there are two possibilities. If Ada says “lower” then At+1 = [a− 1, b− 1],
and E(At+1) = 2 + (b− 1) = b + 1 = E(At)− 1. If Ada says “higher” then At+1 = {b + 1}
and E(At+1) = b+ 1 = E(At)− 1.

In all cases E(At+1) ≥ E(At)− 1, so this proves the Lemma.

2

Lemma 2: If At = {a} for some a, then Zara needs at least e(a) more guesses
to guarantee a win.

Proof of Lemma 2:
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Zara can only win immediately if Bt consists of a single element. But the only possible
At that produce a single element are At = {1} and At = {2011}; if any 1 < n < 2011 are in
At, then both n− 1 and n+ 1 are in Bt.

Suppose without loss of generality that 1 < a ≤ 1006 (the proof for a > 1006 is sym-
metric). Then Bt = {a − 1, a + 1}, and in particular no element less than a − 1 is in At+1.
Similarly, no element less than a− 2 is in At+2, so we cannot have 1 ∈ At+k until k ≥ a− 1.
Thus we require at least a− 1 guesses to have a possible winning move, plus 1 move (for the
winning guess itself). Thus Zara needs at least a = e(a) more guesses.

2

Now we are ready to complete the proof. The game starts in an interval phase for which
At is always an interval with at least 2 elements until some guess causes At to be a single
element. Specifically, by Lemma 1, At is the single {k} after at least E(A1) − k guesses
(since E(At) can decrease by at most 1 each guess), and then by Lemma 2 another k guesses
are required to guarantee Zara a win. So we require at least 1 + E(A1) guesses to win (the
extra 1 is the first guess). If z1 is anything other than 1006, then 1006 ∈ A1 and then
E(A1) = 1008. If z1 = 1006, then either A1 = [1, 1005] or A1 = [1007, 2011]. In either case
E(A1) = 1007, so 1007 in the minimum possible value of E(A1). Therefore we need at least
1 + 1007 = 1008 guesses.

The algorithm at the beginning describes how 1008 guesses will guarantee a win, so we
are done.
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6/2/22. The roving rational robot rolls along the rational number line. On each turn, if the
robot is at p

q
, he selects a positive integer n and rolls to p+nq

q+np
. The robot begins at the

rational number 2011. Can the roving rational robot ever reach the rational number 2?

Solution 1. Let nj be the integer the robot chooses for step j. Let aj and bj the
sequences defined recursively by a0 = 2011, b0 = 1, and

aj = aj−1 + njbj−1,

bj = bj−1 + njaj−1.

Then at step j, the robot’s location is
aj
bj

. Notice now that

aj + bj = (1 + nj)(aj−1 + bj−1),

aj − bj = (1− nj)(aj−1 − bj−1).

Let Π+ =
∏k

j=1(1 + nj) and Π− =
∏k

j=1(1− nj), so

ak + bk = Π+(a0 + b0),

ak − bk = Π−(a0 − b0).

Also notice that a0 + b0 = 2012 and a0 − b0 = 2010. Therefore

2ak = 2012Π+ + 2010Π−,

2bk = 2012Π+ − 2010Π−.

At step k the robot’s location is

2ak
2bk

=
2012Π+ + 2010Π−
2012Π+ − 2010Π−

.

If this is equal to 2, then

2012Π+ + 2010Π− = 2(2012Π+ − 2010Π−),

or
3 · 2010Π− = 2012Π+.

We need to determine whether there is some set of positive integers n1, . . . , nk for some k
such that

3 · (2 · 3 · 5 · 67)
k∏

j=1

(1− nj) = (2 · 2 · 503)
k∏

j=1

(1 + nj).
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Clearly k must be even so that the left side of the above is positive. First we eliminate the
powers of two by choosing n1 = 5. Then we want to solve

3 · (2 · 3 · 5 · 67)(1− 5)
n∏

j=2

(1− nj) = (2 · 2 · 503)(1 + 5)
n∏

j=2

(1 + nj).

or

−3 · 2 · 3 · 5 · 67 · 4
n∏

j=2

(1− nj) = 2 · 2 · 503 · 6
n∏

j=2

(1 + nj).

Cancellation gives

−3 · 5 · 67
n∏

j=2

(1− nj) = 503
n∏

j=2

(1 + nj)

Now we choose our nj to reduce the size of the largest primes. For example if n2 = 504, then
we reduce to solving

−3 · 5 · 67(1− 504)
n∏

j=3

(1− nj) = 503(1 + 504)
n∏

j=3

(1 + nj)

which simplifies to

3 · 5 · 67
n∏

j=3

(1− nj) = 5 · 101
n∏

j=3

(1 + nj)

Choosing the sequence for the nj

5, 504, 102, 104, 66, 12, 10, 8

gives the products

3 · (2 · 3 · 5 · 67)
∏

(1− cj) = (−1)8 3 · (2 · 3 · 5 · 67) · (4 · 503 · 101 · 103 · 65 · 11 · 9 · 7)
(2 · 2 · 503)

∏
(1 + cj) = (2 · 2 · 503) · (6 · 505 · 103 · 105 · 67 · 13 · 11 · 9).

Since these are equal, this sequence gives a valid solution. Explicitly the rationals the roving
rational robot sees are

2011
2

5 // 84
419

504 // 84
17

102 // 18
85

104 // 86
19

66 // 4
17

12 // 16
5

10 // 2
5

8 // 2
1
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Solution 2. Suppose the robot is at the rational number p, where p is a positive integer,
p ≥ 2. Taking n = p2 − p− 1, the next number is

p+ n

1 + np
=

p2 − 1

p3 − p2 − p+ 1
=

p2 − 1

(p2 − 1)(p− 1)
=

1

p− 1
.

Next, suppose the robot is at the rational number 1/q, where q is a positive integer,
q ≥ 2. Taking n = q2 − q − 1, the next number is

1 + nq

q + n
=
q3 − q2 − q + 1

q2 − 1
=

(q2 − 1)(q − 1)

q2 − 1
= q − 1.

Hence, the robot can take the path

2011→ 1

2010
→ 2009→ 1

2008
→ · · · → 1

4
→ 3.

When the robot is at 3, taking n = 9, the next number is

3 + 9 · 1
1 + 9 · 3

=
12

28
=

3

7
,

and taking n = 11, the next number is

3 + 11 · 7
7 + 11 · 3

=
80

40
= 2.

Credits: Problem 1/2/22 was proposed by Palmer Mebane.
All other problems and solutions by USAMTS staff.
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