

USA Mathematical Talent Search
Round 4 Solutions

Year 20 - Academic Year 2008-2009
WWW.usamts.org
$\mathbf{1 / 4 / 2 0}$. Consider a sequence $\left\{a_{n}\right\}$ with $a_{1}=2$ and $a_{n}=\frac{a_{n-1}^{2}}{a_{n-2}}$ for all $n \geq 3$. If we know that a_{2} and a_{5} are positive integers and $a_{5} \leq 2009$, then what are the possible values of a_{5} ?

Since a_{1} and a_{2} are positive integers, all of the subsequent terms must be positive. Divide both sides of the recursion by a_{n-1} to get

$$
\frac{a_{n}}{a_{n-1}}=\frac{a_{n-1}}{a_{n-2}} .
$$

Thus, the ratio of consecutive terms is constant, and the sequence is a geometric sequence.
If $a_{2}=x$, then the ratio between consecutive terms is $x / 2$. Hence $a_{5}=2\left(\frac{x}{2}\right)^{4}=\frac{x^{4}}{8}$. For this to be an integer, given that x is an integer, it is necessary and sufficient that x be a multiple of 2 .

The inequality $a_{5} \leq 2009$ gives us

$$
\frac{x^{4}}{8} \leq 2009 \quad \Leftrightarrow \quad x^{4} \leq 16072
$$

Note that $11^{4}<16072<12^{4}$, so we must have $x \leq 11$. But since x must be even, we must have $x \in\{2,4,6,8,10\}$. Plugging these values of x into $a_{5}=x^{4} / 8$ gives:

$$
a_{5} \in\{2,32,162,512,1250\}
$$

USA Mathematical Talent Search
Round 4 Solutions

Year 20 - Academic Year 2008-2009
WWW.usamts.org
$\mathbf{2 / 4 / 2 0}$. There are k mathematicians at a conference. For each integer n from 0 to 10 , inclusive, there is a group of 5 mathematicians such that exactly n pairs of those 5 mathematicians are friends. Find (with proof) the smallest possible value of k.

There must be 5 mathematicians that are all friends (giving 10 pairs of friends for that group), and 5 mathematicians that all are not friends (giving 0 pairs of friends for that group). If $k \leq 8$, then these conditions cannot both be simultaneously satisfied: if there are 5 mathematicians that are all friends, then any group of 5 mathematicians will contain at least 2 from the group of 5 that are all friends, so we cannot find a group of 5 with no pairs of friends.

Thus we must have $k \geq 9$. We will show that $k=9$ is achievable.
Let A, B, C, D, E be group of 5 mathematicians that are all friends, and let W, X, Y, Z be a group that are all not friends. Further, suppose:

```
\(A\) is friends with \(W, X, Y\), and \(Z\)
\(B\) is friends with \(W, X\) and \(Y\) (and not friends with \(Z\) )
\(C\) is friends with \(W\) and \(X\) (and not friends with \(Y\) and \(Z\) )
\(D\) is friends with \(W\) (and not friends with \(X, Y\), and \(Z\) )
\(E\) is not friends with any of \(W, X, Y\), and \(Z\)
```

Then we have the following groups with the required exact number of friends:

Subset	Number	Pairs of friends
$\{E, W, X, Y, Z\}$	0	none
$\{D, W, X, Y, Z\}$	1	$\{D, W\}$
$\{C, W, X, Y, Z\}$	2	$\{C, W\},\{C, X\}$
$\{B, W, X, Y, Z\}$	3	$\{B, W\},\{B, X\},\{B, Y\}$
$\{A, W, X, Y, Z\}$	4	$\{A, W\},\{A, X\},\{A, Y\},\{A, Z\}$
$\{B, C, D, X, Z\}$	5	$\{B, C\},\{B, D\},\{C, D\},\{B, X\},\{C, X\}$
$\{B, C, D, E, Z\}$	6	all 6 pairs in $\{B, C, D, E\}$
$\{A, B, C, D, Z\}$	7	$\{A, Z\}$, all 6 pairs in $\{A, B, C, D\}$
$\{A, B, C, D, Y\}$	8	$\{A, Y\},\{B, Y\}$, all 6 pairs in $\{A, B, C, D\}$
$\{A, B, C, D, X\}$	9	$\{A, X\},\{B, X\},\{C, X\}$, all 6 pairs in $\{A, B, C, D\}$
$\{A, B, C, D, E\}$	10	all 10 pairs in $\{A, B, C, D, E\}$

Thus the smallest possible value of k is $k=9$.

USA Mathematical Talent Search
 Round 4 Solutions

Year 20 - Academic Year 2008-2009
WWW.usamts.org
$3 / 4 / 20$. A particle is currently at the point $(0,3.5)$ on the plane and is moving towards the origin. When the particle hits a lattice point (a point with integer coordinates), it turns with equal probability 45° to the left or to the right from its current course. Find the probability that the particle reaches the x-axis before hitting the line $y=6$.

Note that the direction of the first move is irrelevant because of the symmetry. After that, we can sketch the possibilities:

The green arrows are guaranteed wins. If the particle follows the blue arrow ending at $(4,3)$, then the probability of winning from there is $\frac{1}{2}$, by symmetry.

Let:
p be the probability of winning from the start circle at $(0,3)$
q be the probability of winning from the square at $(2,2)$
r be the probability of winning from the diamond at $(3,1)$
We then note, by symmetry, that:
the probability of winning from the circle at $(5,3)$ is $1-p$
the probability of winning from the square at $(6,2)$ is q
the probability of winning from the diamond at $(4,5)$ is $1-r$

USA Mathematical Talent Search Round 4 Solutions

Year 20 - Academic Year 2008-2009
www.usamts.org

Therefore, we can write the following system of equations:

$$
\begin{aligned}
& p=\frac{1}{2}+\frac{1}{2} q, \\
& q=\frac{1}{8}+\frac{1}{2} r+\frac{1}{4}(1-r), \\
& r=\frac{3}{4}+\frac{1}{8} q+\frac{1}{8}(1-p) .
\end{aligned}
$$

We can clear the denominators and collect terms:

$$
\begin{aligned}
2 p & =1+q, \\
8 q & =3+2 r, \\
8 r & =7-p+q .
\end{aligned}
$$

Substituting the 3rd equation into the 2nd equation gives:

$$
\begin{aligned}
2 p & =1+q \\
31 q & =19-p
\end{aligned}
$$

So the first equation becomes

$$
62 p=31+31 q=50-p,
$$

hence $63 p=50$ and $p=\frac{50}{63}$.

USA Mathematical Talent Search Round 4 Solutions

Year 20 - Academic Year 2008-2009
WWW.usamts.org
$4 / 4 / 20$. Find, with proof, all functions f defined on nonnegative integers taking nonnegative integer values such that

$$
f(f(m)+f(n))=m+n
$$

for all nonnegative integers m, n.

Let $a=f(0)$. Plugging in $m=n=0$ to the equation gives

$$
0=m+n=f(f(m)+f(n))=f(2 f(0))=f(2 a)
$$

So $f(2 a)=0$. Then, plugging in $m=n=2 a$ gives

$$
4 a=m+n=f(f(m)+f(n))=f(f(2 a)+f(2 a))=f(0+0)=f(0)=a .
$$

So $4 a=a$, hence $a=0$. Thus $f(0)=0$.
Now, plugging in $n=0$ for an arbitrary m gives

$$
m=m+0=f(f(m)+f(0))=f(f(m)+0)=f(f(m))
$$

so $f(f(m))=m$ for all m. In particular, apply f to both sides of the original equation to get

$$
f(m)+f(n)=f(f(f(m)+f(n)))=f(m+n) .
$$

In particular, letting $n=1$ gives $f(m+1)=f(m)+f(1)$.
Let $f(1)=b$, so that (by a trivial induction) we have $f(m)=m b$ for all nonnegative integers m. But $m=f(f(m))=f(m b)=m b^{2}$, so we must have $b^{2}=1$, hence $b=1$.

Therefore, the only function that satisfies the functional equation is $f(m)=m$ for all m.

USA Mathematical Talent Search
 Round 4 Solutions

Year 20 - Academic Year 2008-2009
www.usamts.org
$5 / 4 / 20$. A circle C_{1} with radius 17 intersects a circle C_{2} with radius 25 at points A and B. The distance between the centers of the circles is 28 . Let N be a point on circle C_{2} such that the midpoint M of chord $A N$ lies on circle C_{1}. Find the length of $A N$.

Let C_{3} be the image of C_{2} under a dilation through A by a factor of $1 / 2$. Let O_{1}, O_{2}, O_{3} be the centers of C_{1},
 C_{2}, C_{3}, respectively, so O_{3} is the midpoint of $A O_{2}$.

Then M is the image of N under this dilation. However, M also lies on C_{1}, so M is the intersection of C_{1} and C_{3}, other than A.

Let P be the intersection of $O_{1} O_{3}$ and $A M$. Since $A M$ is a common chord of circles C_{1} and $C_{3}, A M \perp O_{1} O_{3}$, so $A P$ is the height from vertex A to base $O_{1} O_{3}$ in triangle $A O_{1} O_{3}$.

Let $\theta=\angle O_{1} A O_{3}$. Note that $A O_{1}=17, A O_{2}=25$, and $O_{1} O_{2}=28$, so by the Law of Cosines,

$$
\cos \theta=\frac{17^{2}+25^{2}-28^{2}}{2 \cdot 17 \cdot 25}=\frac{13}{85}
$$

Then

$$
\sin ^{2} \theta=1-\frac{13^{2}}{85^{2}}=\frac{7056}{85^{2}}=\frac{84^{2}}{85^{2}}
$$

so

$$
\sin \theta=\frac{84}{85} .
$$

(Since $0<\theta<\pi$, we take the positive root.)
Then

$$
\left[O_{1} A O_{3}\right]=\frac{1}{2} A O_{1} \cdot A O_{3} \sin \theta=\frac{1}{2} \cdot 17 \cdot \frac{25}{2} \cdot \frac{84}{85}=105,
$$

USA Mathematical Talent Search
Round 4 Solutions

Year 20 - Academic Year 2008-2009
WWW.usamts.org
and again by the Law of Cosines,

$$
\begin{aligned}
\left(O_{1} O_{3}\right)^{2} & =\left(A O_{1}\right)^{2}+\left(A O_{3}\right)^{2}-2 A O_{1} \cdot A O_{3} \cos \theta \\
& =17^{2}+\frac{25^{2}}{4}-2 \cdot 17 \cdot \frac{25}{2} \cdot \frac{13}{85} \\
& =289+\frac{625}{4}-65 \\
& =\frac{1521}{4} \\
& =\frac{39^{2}}{2^{2}}
\end{aligned}
$$

hence $O_{1} O_{3}=\frac{39}{2}$.
Therefore,

$$
A P=\frac{2\left[O_{1} A O_{3}\right]}{O_{1} O_{3}}=\frac{2 \cdot 105}{39 / 2}=\frac{140}{13} .
$$

Finally, P is the midpoint of $A M$, and M is the midpoint of $A N$, so

$$
A N=4 A P=\frac{560}{13} .
$$

Credits: All problems and solutions are by USAMTS staff.
(c) 2009 Art of Problem Solving Foundation

