

USA Mathematical Talent Search
 Solutions to Problem 1/1/19

www.usamts.org
$\mathbf{1} / \mathbf{1} / \mathbf{1 9}$. Gene has $2 n$ pieces of paper numbered 1 through $2 n$. He removes n pieces of paper that are numbered consecutively. The sum of the numbers on the remaining pieces of paper is 1615 . Find all possible values of n

Credit This problem was proposed by Richard Rusczyk.
Comments The first step in the problem is to use algebra to find suitable bounds on n. We can then use divisibility properties of integers to find the solutions. Solutions edited by Naoki Sato.

Solution 1 by: Carlos Dominguez (11/OH)

The minimum sum of the numbers on the remaining pieces is $1+2+\cdots+n=\frac{n(n+1)}{2}$, so $\frac{n(n+1)}{2} \leq 1615$. Clearing the denominator and expanding gives $n^{2}+n \leq 3230$. Since $56^{2}+56=3192<3230$ and $57^{2}+57=3306>3230$, we must have $n \leq 56$.

The maximum sum of the numbers on the remaining pieces is $(n+1)+(n+2)+\cdots+2 n=$ $\frac{n(3 n+1)}{2}$, so $\frac{n(3 n+1)}{2} \geq 1615$, which implies $3 n^{2}+n \geq 3230$. Since $3 \cdot 32^{2}+32=3104<3230$ and $3 \cdot 33^{2}+33=3300>3230$, we must have $n \geq 33$.

Of the n numbers removed, let k be the first number. Then the sum of the n remaining numbers is

$$
\begin{aligned}
& (1+2+\cdots+2 n)-[k+(k+1)+\cdots+(k+n-1)] \\
& =\frac{2 n(2 n+1)}{2}-\frac{(2 k+n-1) n}{2} \\
& =1615
\end{aligned}
$$

Multiplying both sides by $2 / n$ and expanding, we get

$$
4 n+2-(2 k+n-1)=3 n-2 k+3=\frac{3230}{n} .
$$

Since $3 n-2 k+3$ is an integer, $3230 / n$ is also an integer. In other words, n is a factor of 3230 . The factors of 3230 are $1,2,5,10,17,19,34,38,85,95,170,190,323,646,1615$, and 3230. The only factors between 33 and 56 (inclusive) are $n=34$ and $n=38$. The corresponding values of k are 5 and 16 , respectively, which are both viable, so the possible values of n are 34 and 38 .

USA Mathematical Talent Search
 Solutions to Problem 2/1/19

www.usamts.org
$\mathbf{2 / 1} / \mathbf{1 9}$. A regular 18 -gon is dissected into 18 pentagons, each of which is congruent to pentagon $A B C D E$, as shown. All sides of the pentagon have the same length.

(a) Determine angles A, B, C, D, and E.
(b) Show that points X, Y, and Z are collinear.

Credit This problem was proposed by Naoki Sato.
Comments Part (a) can be done by considering appropriate combinations of angles in the regular 18-gon. Part (b) can be done by showing that $\angle X Y Z=180^{\circ}$. Solutions edited by Naoki Sato.

Solution 1 by: Luyi Zhang (9/CT)

(a) At the center of the 18-gon, six pentagons join together by their angle that corresponds to $\angle A$. Therefore, $\angle A=360^{\circ} / 6=60^{\circ}$. Since all sides of the pentagon are equal, triangle $A B E$ is equilateral and quadrilateral $B C D E$ is a rhombus.
$\angle A B C$ is an interior angle of the 18 -gon, so $\angle B=\angle A B C=160^{\circ}$. Then

$$
\angle E B C=\angle A B C-\angle A B E=160^{\circ}-60^{\circ}=100^{\circ}
$$

so $\angle D=\angle C D E=\angle E B C=100^{\circ}$ and

$$
\angle C=\angle B E D=180^{\circ}-\angle E B C=180^{\circ}-100^{\circ}=80^{\circ} .
$$

Finally, $\angle E=\angle A E D=\angle A E B+\angle B E D=60^{\circ}+80^{\circ}=140^{\circ}$.
To summarize, $\angle A=60^{\circ}, \angle B=160^{\circ}, \angle C=80^{\circ}, \angle D=100^{\circ}$, and $\angle E=140^{\circ}$.

 USA Mathematical Talent Search
 Solutions to Problem 2/1/19

www.usamts.org

(b) To show that points X, Y, and Z are collinear we will show that $\angle X Y Z=180^{\circ}$. Label points M, N, O, and P, as shown below.

Since all the sides are of equal length, we can easily create isosceles triangles to assist in our angle search. In triangle $M X Y, M X=M Y$ and $\angle X M Y=80^{\circ}$, so $\angle M X Y=$ $\angle M Y X=\left(180^{\circ}-80^{\circ}\right) / 2=50^{\circ}$.

In triangle $P Y Z, P Y=P Z$ and $\angle Z P Y=\angle Z P O+\angle O P Y=60^{\circ}+100^{\circ}=160^{\circ}$, so $\angle P Z Y=\angle P Y Z=\left(180^{\circ}-160^{\circ}\right) / 2=10^{\circ}$.

Then in triangle $O P Y, P O=P Y$ and $\angle O P Y=100^{\circ}$, so $\angle P Y O=\angle P O Y=\angle N Y O=$ $\angle N O Y=\left(180^{\circ}-100^{\circ}\right) / 2=40^{\circ}$, so $\angle Z Y O=\angle P Y O-\angle P Y Z=40^{\circ}-10^{\circ}=30^{\circ}$. Then

$$
\angle X Y Z=\angle M Y X+\angle M Y N+\angle N Y O+\angle Z Y O=50^{\circ}+60^{\circ}+40^{\circ}+30^{\circ}=180^{\circ},
$$

and we are done.

USA Mathematical Talent Search
 Solutions to Problem 3/1/19

www.usamts.org
$3 / 1 / 19$. Find all positive integers $a \leq b \leq c$ such that

$$
\arctan \frac{1}{a}+\arctan \frac{1}{b}+\arctan \frac{1}{c}=\frac{\pi}{4} .
$$

Credit This problem was proposed by Naoki Sato.
Comments First, we can use the properties of the arctan function to establish bounds on a. Then we can transform the given equation into an algebraic equation, from which we can deduce the solutions. Solutions edited by Naoki Sato.

Solution 1 by: Damien Jiang (10/NC)
We first establish bounds on a. Since $\arctan x$ is increasing on $(0,1]$,

$$
\arctan \frac{1}{a} \geq \arctan \frac{1}{b} \geq \arctan \frac{1}{c} .
$$

Hence,

$$
\frac{\pi}{4}=\arctan \frac{1}{a}+\arctan \frac{1}{b}+\arctan \frac{1}{c} \leq 3 \arctan \frac{1}{a}
$$

so

$$
\arctan \frac{1}{a} \geq \frac{\pi}{12} \quad \Rightarrow \quad \frac{1}{a} \geq \tan \frac{\pi}{12}=2-\sqrt{3} \quad \Rightarrow \quad a \leq \frac{1}{2-\sqrt{3}}=2+\sqrt{3}<4 .
$$

Additionally,

$$
\frac{\pi}{4}=\arctan \frac{1}{a}+\arctan \frac{1}{b}+\arctan \frac{1}{c}>\arctan \frac{1}{a}
$$

so

$$
\frac{1}{a}<\tan \frac{\pi}{4}=1 \quad \Rightarrow \quad a>1 .
$$

Therefore, the only possible values of a are $a=2$ and $a=3$.
From the original equation, we subtract $\arctan \frac{1}{c}$, and take the tangent of both sides to get

$$
\frac{\frac{1}{a}+\frac{1}{b}}{1-\frac{1}{a b}}=\frac{1-\frac{1}{c}}{1+\frac{1}{c}}
$$

Note that this equation is equivalent with the original because $\tan x$ is injective on $(0,1]$. Multiplying, clearing denominators, and rearranging, we get

$$
a b c+1=a b+a c+b c+a+b+c .
$$

USA Mathematical Talent Search
Solutions to Problem 3/1/19
www.usamts.org

If $a=2$, then

$$
\begin{aligned}
2 b c+1 & =2(b+c)+b c+2+b+c \\
\Rightarrow \quad b c-3(b+c) & =1 \\
\Rightarrow \quad(b-3)(c-3) & =10 .
\end{aligned}
$$

Because $c>b$, we have $b=4, c=13$ or $b=5, c=8$.
If $a=3$, then

$$
\begin{aligned}
3 b c+1 & =3(b+c)+b c+3+b+c \\
\Rightarrow \quad 2 b c-4(b+c) & =2 \\
\Rightarrow \quad(b-2)(c-2) & =5
\end{aligned}
$$

Because $c>b$, we have $b=3, c=7$.
Therefore, the only solutions are $(a, b, c)=(2,4,13),(2,5,8)$, and $(3,3,7)$.

USA Mathematical Talent Search
 Solutions to Problem 4/1/19

www.usamts.org

4/1/19. In convex quadrilateral $A B C D, A B=C D, \angle A B C=77^{\circ}$, and $\angle B C D=150^{\circ}$. Let P be the intersection of the perpendicular bisectors of $\overline{B C}$ and $\overline{A D}$. Find $\angle B P C$.

Credit This problem was proposed by Naoki Sato.
Comments Since P lies on the perpendicular bisector of $B C, P B=P C$. This and similar observations lead to the construction of congruent triangles which determine $\angle B P C$. In addition, the solution below rigorously estalishes the location of point P. Solutions edited by Naoki Sato.

Solution 1 by: Carl Lian (9/MA)

Note that there are three distinct cases for the position of P : Either outside quadrilateral $A B C D$ on the side of $B C$, that is, $P M<P N$; outside quadrilateral $A B C D$ on the side of $A D$, that is, $P N<P M$; or inside quadrilateral $A B C D$. We first deal with the first case, and then prove that the second and third cases are impossible.

Let M be the midpoint of $B C$ and N the midpoint of $A D$. We have $B M=M C$ and $A N=N D$, and $\angle B M P=\angle C M P=\angle A N P=\angle D N P=90^{\circ}$, so $\triangle B M P \cong \triangle C M P$ and $\triangle A N P \cong \triangle D N P$. From these congruences, $B P=C P$ and $A P=D P$, and we are given that $A B=C D$. Therefore, $\triangle A B P \cong \triangle D C P$, and $\angle A B P=\angle D C P$.

Let $\theta=\angle C B P$. Then $\angle D C P=\angle A B P=77^{\circ}+\theta$, and $\angle B C P=\theta$. Now, by the angles around C, we have $\angle D C B+\angle B C P+\angle P C D=150^{\circ}+\theta+77^{\circ}+\theta=360^{\circ}$, so $2 \theta=133^{\circ}$. Hence, $\angle B P C=2 \angle B P M=2\left(90^{\circ}-\theta\right)=180^{\circ}-2 \theta=47^{\circ}$.

USA Mathematical Talent Search
 Solutions to Problem 4/1/19

www.usamts.org

For the second case, assume by way of contradiction that P lies outside quadrilateral $A B C D$, on the side of $A D$. Again, $\triangle A B P \cong \triangle D C P$. We have $\angle P B A=\angle P C D$, and also $\angle P B M=\angle P C M$ from $\triangle P B M \cong \triangle P C M$. Adding these gives $\angle P B A+\angle P M B=$ $\angle P C D+\angle P C M$, and thus $\angle A B C=\angle B C D$, but this is a contradiction because $\angle A B C=$ 77°, and $\angle B C D=150^{\circ}$, so P cannot lie outside quadrilateral $A B C D$ on the side of $A D$.

For the third case, assume by way of contradiction that P lies inside quadrilateral $A B C D$. Again, $\triangle A B P \cong \triangle D C P$. We have $\angle P B A=\angle P C D$, and also $\angle P B M=\angle P C M$ from $\triangle P B M \cong \triangle P C M$. Adding these gives $\angle P B A+\angle P M B=\angle P C D+\angle P C M$, and thus $\angle A B C=\angle B C D$, but this is a contradiction because $\angle A B C=77^{\circ}$ and $\angle D B C=150^{\circ}$, so P cannot lie inside quadrilateral $A B C D$.

Therefore, the first case is the only possible case, and our assertion that $\angle B P C=47^{\circ}$ still holds.

USA Mathematical Talent Search

Solutions to Problem 5/1/19
www.usamts.org
$5 / 1 / 19$. Let c be a real number. The sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by $a_{1}=c$ and $a_{n}=2 a_{n-1}^{2}-1$ for all $n \geq 2$. Find all values of c such that $a_{n}<0$ for all $n \geq 1$.

Credit This problem was proposed by Naoki Sato.
Comments It is not difficult to show that the value $c=-\frac{1}{2}$ works. If $c \neq-\frac{1}{2}$, then the terms of the sequence must diverge from $-\frac{1}{2}$, to the point where they become positive. The following solution uses a rigorous bounding argument. Solutions edited by Naoki Sato.

Solution 1 by: Sam Elder (12/CO)

The only value is $c=-\frac{1}{2}$.
If $a_{n}=-\frac{1}{2}$, then $a_{n+1}=2 a_{n}^{2}-1=2\left(-\frac{1}{2}\right)^{2}-1=-\frac{1}{2}$, so if $c=-\frac{1}{2}$, then $a_{n}=-\frac{1}{2}<0$ for all $n \geq 1$ and the result is achieved.

Assume $c \neq-\frac{1}{2}$, and define the sequence $b_{n}=2 a_{n}+1$. Assume that $a_{n}<0$ for all n, so $b_{n}<1$ for all n. A recursion for the b_{n} is derived from that for the a_{n} :

$$
\begin{aligned}
\frac{b_{n}-1}{2} & =2\left(\frac{b_{n-1}-1}{2}\right)^{2}-1 \\
\Rightarrow \quad b_{n}-1 & =\left(b_{n-1}-1\right)^{2}-2 \\
\Rightarrow \quad b_{n} & =b_{n-1}\left(b_{n-1}-2\right) \\
\Rightarrow \quad b_{n} & =b_{n-2}\left(2-b_{n-2}\right)\left(2-b_{n-1}\right)
\end{aligned}
$$

for all $n>2$. If $b_{n}=0$, then $b_{n-1}=0$ or $b_{n-1}=2$. However, by assumption, $b_{n}<1$ for all n, and $b_{1}=2 a_{1}+1=2 c+1 \neq 0$, so $b_{n} \neq 0$ for all n.

If $b_{n}<0$, then $b_{n+1}=b_{n}\left(b_{n}-2\right)>0$. Likewise, if $b_{n}>0$, then $b_{n+1}<0$ since $b_{n}<1$ and so $b_{n}-2<-1<0$. Hence, the terms b_{n} alternate in sign, so for all n, one of b_{n-1} and b_{n-2} is negative. The other is less than 1 , so

$$
\frac{b_{n}}{b_{n-2}}=\left(2-b_{n-2}\right)\left(2-b_{n-1}\right)>(2-0)(2-1)=2 .
$$

Let $m=1$ if b_{1} is positive, and $m=2$ if b_{2} is positive, so b_{m} is positive. Take l sufficiedntly large so that $b_{m}>2^{-l}$. Then

$$
b_{m+2 l}>2 b_{m+2(l-1)}>2^{2} b_{m+2(l-2)}>\cdots>2^{l-1} b_{m+2}>2^{l} b_{m}>1,
$$

a contradiction. So $c=-\frac{1}{2}$ is the only solution.

