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1/4/18. Let S(n) =
n∑

i=1

(−1)i+1i. For example, S(4) = 1 − 2 + 3 − 4 = −2.

(a) Find, with proof, all positive integers a, b such that S(a) + S(b) + S(a + b) = 2007.
(b) Find, with proof, all positive integers c, d such that S(c) + S(d) + S(c + d) = 2008.

Credit This problem was proposed by Dave Patrick, and was based on a discussion at the
2006 World Federation of National Mathematics Competitions conference.

Comments Since both parts have the form S(m)+S(n)+S(m+n), it is easiest to analyze
this form first to solve for a, b, c and d. Solutions edited by Naoki Sato.

Solution 1 by: Sam Elder (11/CO)

If n is even, then

S(n) = (1 − 2) + (3 − 4) + · · · + [(n − 1) − n] = −1 − 1 − · · · − 1︸ ︷︷ ︸
n/2 −1s

= −n

2
.

If n is odd, then S(n) = S(n − 1) + n = −n−1
2

+ n = n+1
2

. We now consider the expression
T (m, n) = S(m) + S(n) + S(m + n).

Case 1. Both m and n are odd. Then m + n is even, so

T (m, n) =
m + 1

2
+

n + 1

2
− m + n

2
= 1.

Case 2. Both m and n are even. Then m + n is even, so

T (m, n) = −m

2
− n

2
− m + n

2
= −m − n < 0.

Case 3. m is odd and n is even. Then m + n is odd, so

T (m,n) =
m + 1

2
− n

2
+

m + n + 1

2
= m + 1,

which is even.

Case 4. n is odd and m is even. Analogously with the previous case, T (m, n) = n + 1,
which is again even.

None of these cases yield T (m,n) = 2007, so there are no solutions to part (a). For part
(b), we can use either case 3 or 4, with the only difference being the ordering in the pairs.
In Case 3, m = 2007 and n is even, and in Case 4, n = 2007 and m is even. Hence, the
solutions are (c, d) = (2007, n) and (c, d) = (n, 2007), where n is any even positive integer.
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2/4/18. For how many integers n between 1 and 102007, inclusive, are the last 2007 digits
of n and n3 the same? (If n or n3 has fewer than 2007 digits, treat it as if it had zeros on
the left to compare the last 2007 digits.)

Credit This problem was proposed by Paul Bateman, Professor Emeritus at the University
of Illinois at Urbana-Champaign.

Comments When solving a congruence with modulus m, we can look at the congruence
with respect to each prime factor of m. Then, the solutions can be sewn together using the
Chinese Remainder Theorem. Solutions edited by Naoki Sato.

Solution 1 by: James Sundstrom (12/NJ)

Saying that the last 2007 digits of n and n3 are the same is equivalent to saying that
n ≡ n3 (mod 102007), or

n(n− 1)(n + 1) ≡ 0 (mod 102007).

Therefore, n(n− 1)(n + 1) is divisible by both 52007 and 22007

Since only one of n, n− 1, and n + 1 can be divisible by 5, whichever one is divisible by
5 must also be divisible by 52007, so

n ≡ 0, 1, or − 1 (mod 52007).

Similarly, if n is even, then both n − 1 and n + 1 are odd, so n ≡ 0 (mod 22007). On
the other hand, if n is odd, then (n − 1)(n + 1) ≡ 0 (mod 22007). However, the difference
between n− 1 and n + 1 is 2, so only one of them can be divisible by 4. Call this one n± 1.
Hence, n∓ 1 is divisible by 2 but not 4. Therefore, n± 1 must be divisible by 22006 in order
that (n− 1)(n + 1) ≡ 0 (mod 22007), so n ≡ ±1 (mod 22006). Hence, if n is odd,

n ≡ 1, 22006 − 1, 22006 + 1, or 22007 − 1 (mod 22007).

Recall that if n is even, then n ≡ 0 (mod 22007).

There are three possible values of n modulo 52007 and five possible values of n modulo
22007. By the Chinese Remainder Theorem, there are 15 possible values of n modulo 102007,
which means there are 15 solutions n for 1 ≤ n ≤ 102007.
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A

B

C

D

N

M
O

3/4/18. Let ABCD be a convex quadrilateral. Let M be the midpoint
of diagonal AC and N be the midpoint of diagonal BD. Let O be the
intersection of the line through N parallel to AC and the line through M
parallel to BD. Prove that the line segments joining O to the midpoints
of each side of ABCD divide ABCD into four pieces of equal area.

Credit This problem is based on a problem from the Canadian IMO
training program.

Comments This problem can be succinctly solved by using formulas for the areas of
triangles involving their bases and heights. Solutions edited by Naoki Sato.

Solution 1 by: Kenan Diab (12/OH)

A

B

C

D

N

M

O

P

Q

R

S

Let P , Q, R, and S be the midpoints of AB, BC, CD, and DA, respectively. Consider
quadrilateral APMS. By definition of midpoint, we have AB = 2AP , AC = 2AM , and
AD = 2AS. Thus, a homothecy centered at A maps quadrilateral APMS to quadrilateral
ABCD with a factor of 2. Hence, [APMS] = [ABCD]/4 and SP ‖ BD.

But, we are given OM ‖ BD, so OM ‖ SP . Thus, O and M are the same distance from
SP . Since 4OSP and 4MSP share side SP , it follows that [OSP ] = [MSP ]. Thus,

[OPAS] = [OSP ] + [ASP ] = [MSP ] + [ASP ] = [APMS] =
[ABCD]

4
.

Analogous homothecies centered at B, C, and D give [OPAS] = [OQBP ] = [ORCQ] =
[OSDR] = [ABCD]/4, as desired.
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4/4/18. We are given a 2 × n array of nodes, where n is a positive integer. A valid
connection of the array is the addition of 1-unit-long horizontal and vertical edges between
nodes, such that each node is connected to every other node via the edges, and there are no
loops of any size. We give some examples for n = 3:

Valid Valid Invalid: loop Invalid: not connected

Let Tn denote the number of valid connections of the 2× n array. Find T10.

Credit This problem was proposed by Naoki Sato.

Comments By constructing valid connections on a 2×n array from smaller arrays, we can
obtain a recursive formula for Tn. Solutions edited by Naoki Sato.

Solution 1 by: Drew Haven (11/CA)

It is trivial to note that T1 = 1 because there is only one way to connect two nodes. Let
us compute Tn+1 from Tn. Given any valid connection of 2× n nodes, adding two nodes to
the right gives an array of size 2× (n + 1). The additional two nodes may be connected in
one of three ways:

. . . . . . . . ., ,

None of these result in any loops. This gives a total of 3Tn valid connections.

However, it is possible that a valid connection on a 2 × (n + 1) array does not contain
a valid connection in its leftmost 2 × n nodes. Let us consider the case where the leftmost
2×(n−1) nodes form a valid connection, but the leftmost 2×n nodes do not. There are two
different ways to connect the nodes on the right to make a valid connection on a 2× (n + 1)
array:

. . .. . . ,

This adds 2Tn−1 ways to the total count. Similarly, if only the leftmost 2× (n− 2) nodes
make a valid connection, there are 2Tn−2 ways:

. . .. . . ,
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Likewise, there are 2Tk ways for each k < n that come from the leftmost 2 × k nodes
forming a valid connection. The last case to consider is the case when the leftmost two nodes
are not connected, and there are no valid connections of any 2× k leftmost subarray up to
k = n. There is only one such valid connection:

. . .

Summing these ways gives a formula for Tn+1:

Tn+1 = 3Tn + 2Tn−1 + 2Tn−2 + · · ·+ 2T1 + 1. (1)

To find a simpler recurrence, we subtract

Tn = 3Tn−1 + 2Tn−2 + · · ·+ 2T1 + 1

from this to give

Tn+1 − Tn = (3Tn + 2Tn−1 + 2Tn−2 + · · ·+ 2T1 + 1)

− (3Tn−1 + 2Tn−2 + · · ·+ 2T1 + 1)

= 3Tn − Tn−1

⇒ Tn+1 = 4Tn − Tn−1,

which can be rewritten as
Tn+2 = 4Tn+1 − Tn. (2)

From (1), T2 = 3T1 + 1 = 4. Then from (2),

T3 = 4 · 4− 1 = 15,

T4 = 4 · 15− 4 = 56,

T5 = 4 · 56− 15 = 209,

T6 = 4 · 209− 56 = 780,

T7 = 4 · 780− 209 = 2911,

T8 = 4 · 2911− 780 = 10864,

T9 = 4 · 10864− 2911 = 40545,

T10 = 4 · 40545− 10864 = 151316.

As a side note, an explicit formula for Tn can be found using generating functions:

Tn =
(2 +

√
3)n − (2−

√
3)n

2
√

3
. (3)

Substituting 10 for n here gives the same answer, T10 = 151316.
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5/4/18. A sequence of positive integers (x1, x2, . . . , x2007) satisfies the following two con-
ditions:

(1) xn 6= xn+1 for 1 ≤ n ≤ 2006, and

(2) An =
x1 + x2 + · · ·+ xn

n
is an integer for 1 ≤ n ≤ 2007.

Find the minimum possible value of A2007.

Credit This problem was a former proposal for the Canadian Mathematical Olympiad.

Comments Finding the optimal sequence is not difficut, but a high degree of rigor and
careful reasoning must be employed to show conclusively that you have the minimum value.
In particular, using a greedy algorithm is not sufficient. Both conditions (1) and (2) must
be used effectively. Solutions edited by Naoki Sato.

Solution 1 by: Gaku Liu (11/FL)

We claim that the minimum value of An is
⌈

n+1
2

⌉
. This value is achieved for the sequence

xn =


n + 1

2
for odd n,

3n

2
for even n.

Indeed, if n ≥ 2 is even, then xn−1 = n/2 and xn+1 = (n + 2)/2, both of which are less
than xn = 3n/2. Hence, no two consecutive terms are equal, so condition (1) is satisfied.
For even n,

An =
(x1 + x3 + · · ·+ xn−1) + (x2 + x4 + · · ·+ xn)

n

=
(1 + 2 + · · ·+ n/2) + (3 + 6 + · · ·+ n/2)

n

=
4(1 + 2 + · · ·+ n/2)

n

=
4 · n/2 · (n + 2)/2

2n

=
n + 2

2
=

⌈
n + 1

2

⌉
,
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and for odd n,

An =
(x1 + x3 + · · ·+ xn−2) + (x2 + x4 + · · ·+ xn−1) + xn

n

=
[1 + 2 + · · ·+ (n− 1)/2] + [3 + 6 + · · ·+ 3(n− 1)/2] + (n + 1)/2

n

=
4[1 + 2 + · · ·+ (n− 1)/2] + (n + 1)/2

n

=
4 · 1/2 · (n− 1)/2 · (n + 1)/2 + (n + 1)/2

n

=
n + 1

2
=

⌈
n + 1

2

⌉
.

We now prove this is the minimum through induction. It is true for n = 1, because the
minimum of A1 is 1 =

⌈
1+1
2

⌉
. For n = 2, if A2 = 1, then x1 + x2 = 2 ⇒ x1 = x2 = 1, which

contradicts (1). Hence, the minimum of A2 is 2 =
⌈

2+1
2

⌉
.

Now, assume that A2m ≥
⌈

2m+1
2

⌉
= m + 1 for some positive integer m. Let Sn =

x1 + x2 + · · · + xn. In particular, Sn must be a multiple of n. We have S2m = 2mA2m ≥
2m(m + 1) = 2m2 + 2m. Also,

2m2 + m < 2m2 + 2m < 2m2 + 3m + 1

⇒ m(2m + 1) < 2m2 + 2m < (m + 1)(2m + 1),

so the least multiple of 2m + 1 greater than 2m2 + 2m is (m + 1)(2m + 1). Since S2m+1 >
S2m ≥ 2m2 + 2m, we have S2m+1 ≥ (m + 1)(2m + 1), so

A2m+1 ≥ m + 1 =

⌈
(2m + 1) + 1

2

⌉
.

Note that 2m2 + 2m = m(2m + 2) is a multiple of 2m + 2. The next greatest multiple of
2m + 2 is (m + 1)(2m + 2). Suppose that S2m+2 = (m + 1)(2m + 2) = 2m2 + 4m + 2. Then

2m2 + 3m + 1 < 2m2 + 4m + 2 < 2m2 + 5m + 2

⇒ (m + 1)(2m + 1) < 2m2 + 4m + 2 < (m + 2)(2m + 1),

so the greatest multiple of 2m + 1 less than 2m2 + 4m + 2 is (m + 1)(2m + 1). Since
S2m+1 < S2m+2 = 2m2 + 4m + 2, we have S2m+1 ≤ (m + 1)(2m + 1). But we have already
shown that S2m+1 ≥ (m + 1)(2m + 1), so S2m+1 = (m + 1)(2m + 1).

Also,

2m2 + 2m < 2m2 + 3m + 1 < 2m2 + 4m

⇒ (m + 1)2m < 2m2 + 3m + 1 < (m + 2)2m,
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so 2m2 + 2m is the greatest multiple of 2m less than S2m+1. Since S2m < S2m+1 = (m +
1)(2m + 1), we have S2m ≤ (m + 1)2m. But S2m ≥ (m + 1)2m, so S2m = (m + 1)2m. Then
x2m+1 = S2m+1−S2m = (m+1)(2m+1)−(m+1)2m = m+1, and x2m+2 = S2m+2−S2m+1 =
(m + 1)(2m + 2)− (m + 1)(2m + 1) = m + 1, which contradicts (1).

Hence, S2m+2 ≥ (m + 2)(2m + 2), so

A2m+1 ≥ m + 2 =

⌈
(2m + 2) + 1

2

⌉
,

completing the induction. Therefore, the minimum value of A2007 is
⌈

2007+1
2

⌉
= 1004.


