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1/3/18. In how many distinguishable ways can the edges of a cube be colored such that
each edge is yellow, red, or blue, and such that no two edges of the same color share a
vertex? (Two cubes are indistinguishable if they can be rotated into positions such that the
two cubes are colored exactly the same.)

Credit This problem was proposed by Richard Rusczyk and Sam Vandervelde.

Comments This problem is best solved by systematic casework and well-drawn diagrams.
Solutions edited by Naoki Sato.

Solution 1 by: Igor Tolkov (10/WA)

The four possible colorings are as shown.

Without loss of generality, color three mutually adjacent edges blue, red, and yellow as
shown in the top layer. Then, consider the edge marked by “1”. Because an adjacent edge
is red, this edge can be either yellow or blue.

First, assume that it is yellow. Then consider the edge marked by “2”. This edge can be
either blue or red. If it is red, then all blue edges are uniquely determined and there exist
two options for the remaining four edges. This produces two colorings: One with parallel
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edges of the same color and one with red and yellow edges alternating. If edge 2 is blue,
then the other edges are uniquely determined and we obtain a coloring with blue and red
edges alternating.

Now, if edge 1 is blue, then the other edges are again uniquely determined and we obtain
a coloring with blue and yellow edges alternating. This covers all cases.

Note that all four cubes have a plane of symmetry so orientation does not matter. In
other words, each cube can be rotated to account for orientation.
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2/3/18. Find, with proof, all real numbers x between 0 and 2π such that

tan 7x− sin 6x = cos 4x− cot 7x.

Credit This problem was proposed by Marcin E. Kuczma from the University of Warsaw.

Comments By expressing everything in terms of sine and cosine, it is seen that the given
equation is actually an inequality in disguise, where equality must occur. The equation can
then be solved by finding where equality occurs. Solutions edited by Naoki Sato.

Solution 1 by: Bohua Zhan (12/NJ)

Writing everything in terms of sine and cosine and rearranging, we have:

sin 7x

cos 7x
− sin 6x = cos 4x− cos 7x

sin 7x

⇔ sin 7x

cos 7x
+

cos 7x

sin 7x
= cos 4x + sin 6x

⇔ sin2 7x + cos2 7x

sin 7x cos 7x
= cos 4x + sin 6x

⇔ 1

sin 7x cos 7x
= cos 4x + sin 6x

⇔ 2

sin 14x
= cos 4x + sin 6x

⇔ 2 = sin 14x(cos 4x + sin 6x).

Since the range of sine and cosine are [−1, 1], | sin 14x| ≤ 1 and | cos 4x + sin 6x| ≤ 2 for
all x. Since the product of these two expressions is 2, they must all attain the maximum
value. That is, | sin 14x| = 1, | sin 6x| = 1, and cos 4x = sin 6x. There are two cases:

Case 1: If sin 14x = −1, then cos 4x = sin 6x = −1. So 4x = kπ, where k is an odd
integer. Then for x between 0 and 2π, we have x = π

4
, 3π

4
, 5π

4
, 7π

4
. It is not difficult to verify

that only x = π
4

and x = 5π
4

satisfy the other two equations.

Case 2: If sin 14x = 1, then cos 4x = sin 6x = 1. So 4x = kπ, where k is an even integer.
For x between 0 and 2π, we have x = 0, π

2
, π, 3π

2
, 2π. Note that for all four possible values

of x, 6x is a multiple of π, and sin 6x = 0. Therefore, there are no solutions in this case.

In conclusion, the solutions of x between 0 and 2π are π
4

and 5π
4

.
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3/3/18. Three circles with radius 2 are drawn in a plane such that each circle is tangent
to the other two. Let the centers of the circles be points A, B, and C. Point X is on the
circle with center C such that AX + XB = AC + CB. Find the area of 4AXB.

Credit This problem was proposed by Richard Rusczyk.

Comments The condition AX + XB = AC + CB leads to X lying on an ellipse, whose
equation can be determined with analytic geometry. Solutions edited by Naoki Sato.

Solution 1 by: Tony Liu (12/IL)

Position the three circles in the coordinate plane so that A = (−2, 0) and B = (2, 0), and
let O be the origin. We can easily calculate CO =

√
CA2 −OA2 = 2

√
3, so let C = (0, 2

√
3).

Now, note that the locus of all points X such that AX + XB = AC + CB is an ellipse E .

More specifically, E is centered at O and has foci at A and B. If we let A′ = (−4, 0) and
B′ = (4, 0), then AA′ + A′B = AB′ + B′B = 8, so A′ and B′ lie on the ellipse as well. The
ellipse passes through C as well, so the equation of E is given by

x2

16
+

y2

12
= 1 ⇒ x2 +

4y2

3
= 16.

To locate X, we want to find the point at which the ellipse E intersects the circle centered
at C, which has the equation

x2 + (y − 2
√

3)2 = 4.

Substituting, we obtain

4− (y − 2
√

3)2 +
4y2

3
= 16 ⇒ y2

3
+ 4

√
3y = 24.

Solving this quadratic and taking the positive root yields y = 6
√

5− 6
√

3. This is equal to
the altitude of triangle AXB, with respect to base AB, so the area of this triangle is simply
1
2
· 4 · y = 12

√
5− 12

√
3.
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4/3/18. Alice plays in a tournament in which every player plays a game against every
other player exactly once. In each game, either one player wins and earns 2 points while
the other gets 0 points, or the two players tie and both players earn 1 point. After the
tournament, Alice tells Bob how many points she earned. Bob was not in the tournament,
and does not know what happened in any individual game of the tournament.

(a) Suppose there are 12 players in the tournament, including Alice. What is the smallest
number of points Alice could have earned such that Bob can deduce that Alice scored
more points than at least 8 other players?

(b) Suppose there are n players in the tournament, including Alice, and that Alice scored
m points. Find, in terms of n and k, the smallest value of m such that Bob can deduce
that Alice scored more points than at least k other players.

Credit This problem is based on a problem that appeared in Problem Solving Journal for
secondary students, a British publication.

Comments To show that that the answer is m = n + k − 1, we must prove two things:
First, we must prove that it is possible for Alice to score n + k − 2 points while beating at
most k − 1 other players. Second, we must prove that if Alice scores n + k − 1 points, then
she must have scored more points than at least k other players. Solutions edited by Naoki
Sato.

Solution 1 by: Matt Superdock (10/PA)

We will find a generalization in part (b) and use it to find the answer to part (a).

We claim that the smallest value of m such that Bob can deduce that Alice scored more
points than at least k other players is m = n + k − 1.

If Alice scores more points than at least k other players, then there are at most n − k
players, including Alice, that scored m or more points. It is sufficient to prove that it is
impossible for n−k +1 players to each score n+k−1 or more points, and that it is possible
for n− k + 1 players to each score n + k − 2 or more points.

Suppose for the sake of contradiction that n− k + 1 players each score n + k− 1 or more
points. Call these n−k+1 players good players, and call the other k−1 players bad players.
The good players must collectively score a total of at least (n− k + 1)(n + k − 1) points.

There are
(

n−k+1
2

)
games between two good players, and there are two points available

in each game. In these games, good players can accumulate a total of 2
(

n−k+1
2

)
= (n− k +

1)(n− k) points. There are (n− k + 1)(k − 1) games between one good player and one bad
player, and there are again two points available in each game. In these games, good players
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can accumulate a total of (n−k +1)(2k−2) points. Good players cannot accumulate points
in games between two bad players. Therefore, good players can accumulate a total of at
most (n− k + 1)(n− k) + (n− k + 1)(2k − 2) = (n− k + 1)(n + k − 2) points, which is less
than (n−k +1)(n+k−1). We have reached a contradiction, so it is impossible for n−k +1
players to each score n + k − 1 of more points.

It remains to be shown that it is possible for n − k + 1 players to each score n + k − 2
or more points. Again, call these n − k + 1 players good players, and call the other k − 1
players bad players. Every good player plays n − k games against good players and k − 1
games against bad players. Suppose that every game between two good players results in a
tie, and every game between a good player and a bad player results in a win for the good
player. In this scenario, each good player gets exactly n− k + 2(k − 1) = n + k − 2 points,
as desired.

Therefore the answer is indeed m = n + k − 1.

Applying our generalization to part (a), we find that the answer is 12 + 8− 1 = 19.

Further Comments. Some students attempted to prove that if Alice scores n + k − 1
points, then she must have scored more points than at least k other players by setting up a
“worst-case scenario,” consisting of a number of top players that tie each other, and beat all
worse players.

Proofs that simply state this worst-case scenario are not sufficiently rigorous. Proofs that
began with this scenario and used the idea that for every point one player gained, another
player lost, were also generally unconvincing. You must prove that Alice scores more points
than at least k other players in all possible scenarios, and the easiest way is as done above.
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5/3/18. Let f(x) be a strictly increasing function defined for all x > 0 such that f(x) > − 1
x

and f(x)f(f(x) + 1
x
) = 1 for all x > 0. Find f(1).

Credit This problem was proposed by Joe Jia.

Comments One important step in solving this functional equation is to substitute f(x)+1/x
for x into the functional equation itself, a step which is suggested by the form of the functional
equation. Then the strictly increasing condition can be used to solve for f(x). Solutions
edited by Naoki Sato.

Solution 1 by: Vlad Firoiu (9/MA)

From the given equation,

f

(
f(x) +

1

x

)
=

1

f(x)
.

Since y = f(x) + 1
x

> 0 is in the domain of f , we have that

f

(
f(x) +

1

x

)
· f

(
f

(
f(x) +

1

x

)
+

1

f(x) + 1
x

)
= 1.

Substituting f
(
f(x) + 1

x

)
= 1

f(x)
into the above equation yields

1

f(x)
· f

(
1

f(x)
+

1

f(x) + 1
x

)
= 1,

so that

f

(
1

f(x)
+

1

f(x) + 1
x

)
= f(x).

Since f is strictly increasing, it must be 1 to 1. In other words, if f(a) = f(b), then
a = b. Applying this to the above equation gives

1

f(x)
+

1

f(x) + 1
x

= x.

Solving yields that

f(x) =
1±

√
5

2x
.

Now, if for some x in the domain of f ,

f(x) =
1 +

√
5

2x
,
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then

f(x + 1) =
1±

√
5

2x + 2
<

1 +
√

5

2x
= f(x).

This contradicts the strictly increasing nature of f , since x < x + 1. Therefore,

f(x) =
1−

√
5

2x

for all x > 0. Plugging in x = 1 yields

f(1) =
1−

√
5

2
.


