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1/3/17. For a given positive integer n, we wish to construct a 662 626
circle of six numbers as shown at right so that the circle has the
following properties: 866 264

(a) The six numbers are different three-digit numbers, none of
whose digits is a 0. 486 648

(b) Going around the circle clockwise, the first two digits of each
number are the last two digits, in the same order, of the previous number.

(c) All six numbers are divisible by n.

The example above shows a successful circle for n = 2. For each of n = 3, 4, 5, 6, 7, 8,
9, either construct a circle that satisfies these properties, or prove that it is impossible to do
SO.

Credit This problem was based on a proposal by George Berzsenyi, founder of the
USAMTS.

Comments First, you must determine for each given n whether such a circle of numbers
exists or not. When it exists, such a circle is not hard to find. When it does not exist, well-

known divisibility rules of numbers can be used to give a rigorous proof. Solutions edited by
Naoki Sato.

Solution 1 by: Shotaro Makisumi (10/CA)

Circles can be constructed for n = 3, 4, 6, and 7. An example of each is shown below.
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We will show that such a construction is impossible for n = 5, 8, and 9.

n = 5: Each number must end in 0 or 5 for divisibility by 5, but 0 cannot be used, so all
numbers must end in 5. Then, going around the circle, the ten digits must also all be 5, as
the hundred digits. Thus, all numbers must be 555, which violates rule (a).

n = 8: All units digits must be even for divisibility by 8. Then the ten digits and also
the hundred digits must all be even. Since 8 divides 200, 8 must also divide the last two
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digits. The only possibilities are 224, x48, x64, and x88, where x is an even digit. Going
clockwise around the circle, 24 and x64 both force 48 to be the next number, which then
forces 88 as the next number, and then 888. Thus, 888 will necessarily be repeated before
the circle is complete, violating rule (a).

n =9: Assume such a construction is possible, and pick a number abc (or 100a+ 106+ c)
in the cycle. A number is divisible by 9 if and only if the sum of its digits equals a multiple
of 9, so 9|(a + b+ ¢). If we let the next number clockwise be bed, then 9|(b + ¢ + d), so
9[(a+b+c)—(b+c+d)] or9|(a—d). Since 1 < a, d <9, we must have a = d, so bed = bca.
Continuing clockwise, we see by the same argument that the next numbers are cab and abc.
The number abc must then appear twice, which again violates rule (a).
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2/3/17. Anna writes a sequence of integers starting with the number 12. Each subsequent
integer she writes is chosen randomly with equal chance from among the positive divisors of
the previous integer (including the possibility of the integer itself). She keeps writing integers
until she writes the integer 1 for the first time, and then she stops. One such sequence is

12,6,6,3,3,3, 1.

What is the expected value of the number of terms in Anna’s sequence?
Credit This problem was proposed by Mathew Crawford.

Comments This problem is similar to problem 2/1/17, in which we also calculated an
expected value using a recursive formula. Solutions edited by Naoki Sato.

Solution 1 by: Garrett Marcotte (12/CA)

Let (a,) be a sequence such as described in the problem, and let F (al) be the expected
number of terms of (a,). To calculate E(al) suppose that di, ds, ..., d; are the positive
divisors of a;, with di = a;. Then there is a + probablhty that any given divisor d; is chosen
as as. Thus, based on the method of generatmg the sequence, we can calculate E(a;) as
follows:

1 1

1
Blay) = GUB() + 1)+ [B@) + 1]+ + 1) + 1
%[k;jLE(dl) + E(dy) 4+ -+ E(dp_1)] + % (dk)
N %E@l) %[kﬁLE(dl)+E(d2)+---+E(dk—1)]

= E(CL1> - ﬁ[k} + E(dl) + E(dz) + -+ E(dk—l)]

Now we apply this result to find £(12). By the definition of the sequence, E(1) = 1. The
numbers 2 and 3 have the same number of divisors, namely 2, so

1
E(2)=E@3) = I[Q + E(1)] = 3.
The number 4 has three divisors, namely 1, 2, and 4, so
1 7
E4) = 5[3 +E(1)+ E(2)] = 7

The number 6 has four divisors, namely 1, 2, 3, and 6, so

Yy B+ EQ 4+ E@) = %1

B(6) = 3
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Finall, the number 12 has six divisors, namely 1, 2, 3, 4, 6, and 12, so
1
E(12) = 5[6 +E(1)+ E(2)+ E(3)+ E(4) + E(6)]

_! 6+1+3+3+7+11
5 2 3

121
30

Solution 2 by: Gaku Liu (10/FL)

We will count the expected value of the number of each of the integers 12, 6, 4, 3, 2, and
1 in the sequence separately. (Note: We will use the term decomposition to denote a term
changing from one integer to a different one.)

The integer 12 always appears as the first term of the sequence. The next integer has an
equal chance of being any one of 12’s six divisors, so a second 12 will appear an expected %
times. Then, a third 12 will appear an expected (é)2 times, etc., so the expected value of

the number of 12’s is
1+ L + 1)’ + _ 0
6 6 5

The integer 6 can only decompose from the integer 12. 12 has an equal chance of decom-
posing into any of its five proper divisors, so 6 has a % chance of appearing in the sequence.
6 has four divisors, so the expected value of the number of 6’s is

1+l (! 2+
4" \4

The integer 4 can only decompose from the integer 12, so it has a % chance of appearing
in the sequence. 4 has three divisors, so the expected value of the number of 4’s is

. 2+
3 \3

The integer 3 can decompose from either 12 or 6. It has a % chance of decomposing from

1 . . o . .
12. 6 has a ¢ chance of appearing in the sequence, and has three proper divisors it can

decompose into, so there is a % . % = % chance the integer 3 will decompose from 6. Hence,

there is a % + % = % chance 3 will appear in the sequence. The integer 3 has two divisors,
so the expected value of the number of 3’s is

1+l 2+
2 7\ 2

4 4

_1 —
5 3 15

1
5

5

1
5

4

15
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The integer 2 can decompose from either 12, 6, or 4. It has a % chance of decomposing
1

1 _ 1 i 1.1 _ 1 i
from 12, a ¢ - 3 = 7z chance of decomposing from 6, and a ¢ - 5 = 7; chance of decomposing

from 4. Hence, 2 has a % + % + % = % chance of appearing in the sequence. The integer 2
has two divisors, so the expected value of the number of 2’s is

L1 1+ L + 1y’ +
30 2 2
The integer 1 will always appear exactly 1 time. Hence, the expected value of the total
number of terms is

11 11
30 15

6+4+3+8+11+1_121
5 15 10 15 15 30
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3/3/17. Points A, B, and C are on a circle such that AABC is A
an acute triangle. X, Y, and Z are on the circle such that AX is Y
perpendicular to BC' at D, BY is perpendicular to AC at F/, and CZ
is perpendicular to AB at F'. Find the value of 7

AX BY (CZ

+ =t =, .

AD BE CF B D C

and prove that this value is the same for all possible A, B, C on the X

circle such that AABC is acute.
Credit This problem was proposed by Naoki Sato.

Comments This geometry problem can be solved by recognizing that the given ratios can
be expressed as ratios of certain areas, and using the fundamental result that HD = DX,
where H is the orthocenter of triangle ABC. A solution using power of a point is also
possible. Solutions edited by Naoki Sato.

Solution 1 by: Justin Hsu (11/CA)

Let H be the orthocenter of AABC. First, ABHD is similar to ABCFE, since they are
both right triangles and they share Z/CBE, so /BCE = ZBHD. Also, /BXA =/BCA =
/BHD, since they both are inscribed angles that intercept the same arc BA. Now, ABXH
is isosceles, which means that BD is the perpendicular bisector of segment HX. Therefore,
ABDH = ABDX, and HD = DX. Similarily, this can be extended to the other sides of
the triangle to show that HE = FY and HF = F'Z.

Now,
AX BY oA AD+DX+BE+EY+CF+FZ
AD BE CF AD BE CF
1+DX+1+EY+1+FZ
- AX BY cz

HD N HE N HF
AD BE CF

But each fraction is a ratio between the altitudes of two triangles with the same base, so
we can rewrite this sum in terms of area, where [ABC| denotes the area of AABC:

=3+

o, HD  HE HF [HBﬂ+jHCm%jHAm
AD " BE ' CF [ABC] ' [ABC] ' [ABC]

_ 4, [4BC

[ABC]

=3+1=4.
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Solution 2 by: James Sundstrom (11/NJ)

By the Power of a Point Theorem,
AD-DX = BD-CD.

Therefore,
DX BD CD
1D~ AD 4D = cot Beot C.
Similarly,
EY
BE = cot C'cot A,
Fz
— = Acot B.
CF cot A cot

We can calculate

AX BY (CZ B AD DX BE FEY CF FZ
AD "BETCF aAp " ap "BE TBE T CF T CF
:3+DX+EY+FZ
AD BE CF
= 3 + cot Bcot C + cot C' cot A + cot A cot B
tan A + tan B + tan C
tan Atan BtanC

We claim that
tan A + tan B + tan C' = tan A tan B tan C

for all acute triangles AABC' (acuteness of AABC means that tan A, tan B, and tan C
exist). [Ed: As the following argument shows, this identity holds for all triangles ABC
where both sides are defined.]

We have that
tanC' = tan(mr — A — B) = tan(—A — B) = —tan(A + B),

and

tan A 4 tan B
tan(A + B) =
an(A + B) 1—tan Atan B’
SO
ton (' — tan A 4 tan B

" 1—tanAtan B’
This can be re-arranged to become tan A + tan B + tan C' = tan A tan B tan C.

Hence,
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4/3/17. Find, with proof, all triples of real numbers (a, b, ¢) such that all four roots of the
polynomial f(z) = x* + ax® + bx?® + cx + b are positive integers. (The four roots need not be
distinct.)

Credit This problem was based on a proposal by Brian Rice.

Comments To find all possible sets of roots (which is what the problem is effectively asking
for), you must use both the fact they are positive and integers. The first condition can be
used to find bounds on the roots and narrow down to a finite number of cases, and the
second condition can be used to find them specifically. Solutions edited by Naoki Sato.

Solution 1 by: Tony Liu (11/IL)

Let p, q, r, and s be the positive integer roots of f(z) = 23+ ax®+ bz? + cx +b. We have

flz) =2 +az® +ba® +cx +b
= (@ —p)(z —q)(z —7)(z — 5)
=a2'— (p+q+r+8)2°+ (pg+pr+ps+qr+gqs+rs)z’
— (pqr + qrs + rsp + spq)x + pqrs.

Comparing coefficients, we note that it suffices to find all quadruples (p, g, r, s) of positive
integers such that
b=pqrs =pq+pr+ps+qr+qs+rs,

for then we obtain reals (which in fact are integers) a and ¢ as
a=—(p+q+r+s) and c=—(pgr+qrs+rsp+ spq),

and hence obtain all triples (a, b, ¢). First, let us rewrite our equation containing b by dividng
through by pgrs. We have
1 1 1 1 1 1
— —+—+—=1L
pq pr ps qr qs TS

Without loss of generality, we have T—ls > % so rs < 6 for some pair of the roots (for

instance, the two smallest). Assume r > s and p > ¢q. We now proceed with some casework.
Case 1: rs = 6. We either have (r,s) = (6,1) or (3,2). If (r,s) = (6,1), we have

6pg =pq+7(p+q)+6 < (5p—T7)(5q — 7) =49+ 30 = 79,

which admittedly does not have any integer solutions (p, q) since 79 is prime and we must
have 5p — 7 =79 and 5q — 7 = 1, but this is clearly impossible. If (r, s) = (3,2) we have

6pq = pq+5(p+q) +6 <= 5(pg—p—q) =6,
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which again does not have any integer solutions (p, ¢) since 6 is not divisible by 5.

Case 2: rs = 5. We have (r,s) = (5,1) so
5pq =pg+6(p+4q) +5 < 2(pg —3p —3q) =5,

which does not have any integer solutions (p, ¢) since 5 is odd.
Case 3: rs = 4. We either have (r,s) = (4,1) or (2,2). If (r,s) = (4, 1), then

dpg =pq+5(p+q)+4 <= (3p—15)(3¢—5) =25+12 =37,

sod3p—5H=37T=p=14and 3¢ —5 =1 = ¢ = 2, since 37 is prime. Thus, we obtain
(p,q,7,s) = (14,2,4,1), whence a = —21, b = 112, and ¢ = —204. If (r,s) = (2,2), we have

dpg =pg+4(p+q)+4 <= (3p—4)(3¢—4) =16 + 12 = 28,

which decomposes as a product of two positive integers as 28 -1 =14-2 =7 -4. It is easily
verified that only the cases 3p — 4 = 14 and 3¢ — 4 = 2 yields a valid solution (p, q) = (6,2).
We obtain (p,q,r,s) = (6,2,2,2), whence a = —12, b = 48, and ¢ = —80.

Case 4: rs = 3. We have (r,s) = (3,1) so
3pg=pg+4(p+q)+3 < 2(pg —2p —2q) = 3,
which does not have any integer solutions (p, q) since 3 is odd.
Case 5: rs = 2. We have (r,s) = (2,1) so
2pq=pg+3p+q)+2 = (p-3)(¢-3)=9+2=11,

and we have p—3 =11 = p =14 and ¢ — 3 = 1 = ¢ = 4. Thus, we get (p,q,r,s) =
(14,4,2,1), which we obtained earlier in a different order with (r,s) = (4, 1).

Case 6: rs = 1. We have (r,s) = (1,1) so
pg=pg+2(p+q)+1 < 2(p+q)+1=0,

which is clearly absurd, so there are no positive integer solutions (p, q).

Thus, we have determined all desired triples (a, b, ¢), namely (—21, 112, —204) and (—12,48, —80).

Note: The number of cases can be reduced by the following argument. First, not all of p,
q, r, and s can be odd. If they were, then pgrs would be odd, but then pg+pr—+ps+qr+qs+rs,
as the sum of six odd integers, would be even. Hence, at least one of them must be even.

WOLOG, let p be even. Then

pgrs —pq —pr —ps =p(qrs —q—r —s) =qr +qs +7rs,
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so qr+qs—+rsiseven. If g, r, and s were all odd, then ¢gr+¢s—+rs would be odd, contradiction,
so at least one of them must be even. WOLOG, let ¢ be even.

Then
rS = pqrs — pq — pr — ps — qr — ¢s.
Each term in the RHS contains a factor of p or ¢, so the RHS is even. Then rs is even, so
one of r and s must be even. Hence, of the four positive integers p, ¢, r, and s, at least three

must be even. This argument, among other things, allows us to eliminate cases 2, 4, and 6
above.
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5/3/17. Lisa and Bart are playing a game. A round table has n lights evenly spaced around
its circumference. Some of the lights are on and some of them off; the initial configuration
is random. Lisa wins if she can get all of the lights turned on; Bart wins if he can prevent
this from happening.

On each turn, Lisa chooses the positions at which to flip the lights, but before the lights
are flipped, Bart, knowing Lisa’s choices, can rotate the table to any position that he chooses
(or he can leave the table as is). Then the lights in the positions that Lisa chose are flipped:
those that are off are turned on and those that are on are turned off.

Here is an example turn for n = 5 (a white circle indicates a light that is on, and a black
circle indicates a light that is off):

1
Initial Position. > 2
4 3
1
Lisa says “1, 3, 4.”
Bart rotates the table one ° 2
position counterclockwise.
4 3
1
Lights in positions 1, 3, 4 are 5 2
flipped.
4 3

Lisa can take as many turns as she needs to win, or she can give up if it becomes clear
to her that Bart can prevent her from winning.

(a) Show that if n = 7 and initially at least one light is on and at least one light is off,
then Bart can always prevent Lisa from winning.

(b) Show that if n = 8, then Lisa can always win in at most 8 turns.

Credit This problem was based on a problem from the Puzzle TOAD page at
http://www.cs.cmu.edu/puzzle.

They credit the problem to Ron Holzman of the Technion—Israel Institute of Technology.
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Comments The case n = 7 can be solved by considering what moves must make Bart lose
to Lisa. The case n = 8 can be solved by an induction argument. Solutions edited by Naoki
Sato.

Solution 1 by: Hannah Alpert (11/CO)

For part (a), Lisa sees at least one light on and at least one light off, and she wants to
turn all the lights the same color (we will say that two lights are the “same color” if they are
both on or both off). For Lisa to win, the game must end with Bart being stuck: He must
either turn all the off lights on or all the on lights off. Then as a last move, if all the lights
are off, Lisa will turn all of them on.

However, since 7 is odd, the number of off lights cannot be the same as the number of on
lights. Therefore, Bart cannot end up with such a decision; for example, if there are 3 lights
on and 4 lights off, and Lisa picks three positions, Bart cannot possibly be forced to turn all
the lights the same color, because it is not even possible to turn all the off lights on! Thus,
for any odd n and not all lights the same color, Bart can prevent Lisa from winning.

For part (b), we will prove by induction on k that if there are n = 2% lights, Lisa can
always win in at most 2* turns. Then obviously, we can apply this fact to the case where
n = 8.

In the base case, k = 0, there is one light. If it is on, Lisa wins; if it is off, Lisa requests
to turn it on. That takes only one turn.

Now assume that if there are 2% lights, then Lisa can win in at most 2¥ turns. We want
to show that if there are 2 x 2% lights, then Lisa can win in at most 2 x 2¥ turns. Observe
that since the number of lights, 2**1, is even, each light has a partner light across from it
on the table. Also notice that when Lisa chooses positions, the partners are preserved; for
example, if there are 8 lights and Lisa chooses positions 1 and 5, then now matter how Bart
rotates the table, she knows that some light and its partner will both change color.

Lisa’s aim will be first to get each light the same color as its partner and then to turn
all the pairs on. To get each light the same color as its partner, she restricts her choices
such that she never chooses both a light and its partner. Since there are 2 x 2¥ lights, there
are 2% sets of partners. Lisa imagines an equivalent table with 2* lights, where each light
corresponds to one set of partners on the big table. For each pair on the big table that has
two different colors, their light is off on the small table; for each pair on the big table with
the same color, their light is on at the small table. Then she makes each light the same color
as its partner in 2¥ moves, just as she would solve the small table in 2¥ moves.

[Ed: To clarify, here is an example. Suppose the big table has 8 lights, and positions 1,
2, and 6 are on. Then the small table has 4 lights, and positions 2, 3, and 4 are on. Looking
at the small table, Lisa chooses position 1. That means on the big table, she can choose
position 1 or 5. After she does so and Bart rotates the table, exactly one light (among two
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partners) is flipped, which means that one light gets flipped on the small table. Choosing
exactly one light among partners ensures that this will always be the case. Lisa continues
making moves towards getting all the lights on the small table, and when that happens, for
any pair of partner lights on the big table, both are on, or both are off.]

Once every light is the same color as its partner, Lisa restricts her choices such that for
every light she chooses, she also chooses its partner. This time she imagines another table
with 2% lights. On this small table, each light still corresponds to one set of partners on the
big table, but this time the light at the small table is the same color as the pair (since the
partners now match). She finishes solving the big table in 2*¥ moves, just as she would solve
the small table in 2¥ moves. Lisa has then solved the big table with 2 x 2* lights in 2 x 2*
moves. Our induction is complete.

Solution 2 by: Kristin Cordwell (9/NM)

(b) We identify the lights and the switching patterns with polynomials by calling the first
of the consecutive eight lights (points) 1, the second x, the third 2, and so on, all the way
up to 7. A light will be “on” if the coefficient of its respective power of x is 1; otherwise,
the light will be “oft”. We will also think of the switching pattern being rotated, rather
than the lights. Similarly, a coefficient of 1 in a switching pattern polynomial will indicate
that that position is to be switched. To rotate a switching pattern n positions, we multiply
the corresponding polynomial by 2", and we take this new polynomial mod 28 + 1, because
2® = 1, having gone all the way around the circle. When we add and multiply polynomials,
we take the coefficients mod 2, since switching (adding a power of z, with a coefficient of 1)
changes an “off” (0) to an “on” (1) and vice-versa.

[Ed: For example, suppose the table has 8 lights, and positions 1, 2, and 6 are on. Then
the polynomial corresponding to this set of lights is

$1_1 +l’2_1 +$6—1 —14+x+ 1'5.

Lisa chooses positions 1, 2, and 6. Suppose Bart rotates the table by five positions. Then
the lights in positions 6, 7, and 3 get flipped, so the lights in positions 1, 2, 3, and 7 are on.
In terms of the polynomials, we multiply 1 + = + 27 by 1 + 2° to get

14+z+22)1+2°) =1+ 2+ 22° + 25 + 2%

We reduce all coefficients mod 2, because flipping a light twice does nothing. Also, going
around the circle, position 10 is the same as position 2, which is the same as reducing the
polynomial mod 2% + 1. Hence,

1442+ + 20 =140+ 22+ 28 =2t 422 23 b 27

which confirms that the lights at positions 1, 2, 3, and 7 are on.]
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We now define Ayp(z) to be the initial polynomial for the lights that are on and off, and
A, () the polynomial for the lights at the end of the n'® round. We claim that if Lisa gives
Bart a switching pattern equal to the “on” lights at the beginning of that round, then Lisa
will win in eight or fewer rounds.

When Lisa gives Bart Ag(z) for the switching pattern, we end up with
Al(.f) = Ao(l') + l’ale(J)) = (1 + Ial)AQ(Q?)

as the new light pattern, where Bart has rotated the switching pattern by a; positions.
Similarly,
As(z) = (1 +2%) As(2),

where Bart rotates the second switching pattern by as positions. Continuing, we get

Az(z) =
Au(z) =

1+ 2%)As(x),
1+ 2%)As(x),

(
(

Ag(x) = (1 + %) Ay (x).

Note that if z = 1, then for any ¢,
l+2" =14+1"=2=0,

so 1 4+ z is a factor of 1 + . Indeed,

(I4+z)(l4+z+a®+---+2%")
=l+a+a®+ +a2" o+’ 2%
= 1422+ 227+ - + 2% + 2

=1+ x™.

Thus, setting Pi(z) =1+ 2+ 2> + -+ + 2%, we can write
1+ 2% =(1+x)P(x).
So,

Ag(z) = (1+2%) Ar(x)
(T4 2%)(1 4+ 2%7) Ag(2)

= (1+2")(1+27) - (1+2")Ag(z)
(1+2)Ps(z)(1 + x)Pr(x) - - (1 + )Py (z)Ao(x)
= (14 2)*Ps(x) Pr(x) - - Py () Ag().
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Now,

(14 2)® =1+ 8z + 282” + 562° + 702" + 562° + 282° + 827 + 2®
=1+2° (reducing the coefficients mod 2)
=0, (reducing the polynomial mod 1+ %)

so Ag(z) = 0. Therefore, all lights will always be off after eight rounds. Looking back at the
equation

Ag(r) = (1 +2%) Az (),

we see that the polynomial A7(x) must then have the property that for any ag, multiplying
Az(z) by 1+ 2% gives the zero polynomial. The only polynomials A;(z) that have this
property are A7(x) =0 and A7(z) = 1+ 2+ 2%+ - +27. Thus, after seven turns, the lights
are either all on or all off. If the lights are all on, Lisa has won at the end of the seventh
round (or sooner, if they were all on sooner). If they are all off, Lisa gives Bart the switching
pattern of change everything, and Lisa wins at the end of the eighth round (or sooner, if
they were all off sooner).

This generalizes to all n that are powers of two, so that Lisa can always win in at most
n rounds.



