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1/2/17. At the right is shown a 4 x 4 grid. We wish to fill in the grid such [1]2]37T4
that each row, each column, and each 2 x 2 square outlined by the thick lines
contains the digits 1 through 4. The first row has already been filled in. Find,
with proof, the number of ways we can complete the rest of the grid.

Credit This problem was proposed by George Berzsenyi, founder of the USAMTS.

Comments This is a relatively simple counting problem (inspired by the latest Sudoku
puzzles and simplified to a 4 x 4 grid), where you need a little care to make sure that you
have covered all the cases and that you haven’t counted any grids twice. Lynnelle Ye shows
a particularly nice approach. Solutions edited by Naoki Sato.

Solution 1 by: Lynnelle Ye (8/CA)

The numbers in the second row must be one of the following: 3412,4321,3421, or
431 2.

In the first two cases, the first and third columns are missing the same numbers, and
the second and fourth columns are missing the same numbers, so the number chosen for the
third row, first column determines the number chosen for the third row, third column, and
the number chosen for the third row, second column determines the number chosen for the
third row, fourth column. Once the third row is chosen, the fourth row is determined. For
example, with the first case for the second row,

1 2 3 4
3 4 1 2
2or4|lor3|4or2|3orl

So these two cases contribute a total of 23 = 8 possibilities.

In the second two cases, the number chosen for the third row, first column determines
the number chosen for the third row, either third or fourth column. This then determines
the number in the third row, second column, which then determines the third row, whatever
column is left. Again, the fourth row is determined. For example, with the third case for
the second row and the third row, first column equal to 2,

112134
314121
2111413

The third row, fourth column must be 3, which means that the third row, second column
must be 1, which means that the third row, third column must be 4. So these two cases
contribute a total of 22 = 4 possibilities.

Therefore, there are a total of 8 +4 = 12 ways to complete the rest of the grid.
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2/2/17. Write the number
1

i
as the sum of terms of the form 29, where ¢ is rational. (For example, 2! + 273 4 28/5 is a
sum of this form.) Prove that your sum equals 1/(v/2 — v/2).

Credit This problem was proposed by Sidney Kravitz.

Comments This problem is effectively an exercise in rationalizing the denominator, but
the twist is the presence of both the square root and the cube root. A knowledge of basic
algebraic identities can take care of both. James Sundstrom arrives at the answer using
two steps, Justin Hsu shows how to the same calculation in one step, and Jeffrey Manning
provides a clever solution using geometric series. Solutions edited by Naoki Sato.

Solution 1 by: James Sundstrom (11/NJ)

The identities (a — b)(a + b) = a? — b* and (a — b)(a® + ab + b?) = a® — b3 suggest the
following approach for rationalizing the denominator. For example, setting a = /2 and
b= 2 gives

(V2 = V2)(V2+V2) =2 - V4,

SO

1 V2+ V2 V242
V2-¥2  (V2-Y2)(V2+¥2)  2-V4

Then setting a = 2 and b = /4 gives
(2-Va)(d+2Va+2V2) =8 —4=4,

SO

V2+ V2 (V2+V2)(4+ 274+ 2V2)

24 2 VA)(4+2V4+292)
W24+ 4024 2VV2 + 4+ 2V2V2 4+ 2V/4
B 4

—f+\/_+f\/_+1+\/_\/_ \g_

=27 425 423 (2f> (271) +2° 425 (2%> (271) +25 (271

=922 4925+ 26 +201 975 4273
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Solution 2 by: Justin Hsu (11/CA)

We have the identity
(a —b)(a® + a’b + a’b* + a®b® + ab® + b°) = a® — b°.

Now, we let a = /2 and b = v/2, and multiply the numerator and denominator by a°®+ a*b+
a®b? + a?b® + ab* + b°. This gives us

1 AN2 + 42 + 242 + 4 + 2922 + 234
V2= V2 AV2+ 42+ 242+ 4+ 292V2 + 234
W2+ 4V2 4 2VAV2 + 4 4 2V2v2 + 274
N 4

1 1 1 0 _1 _1
=22 4+25 426 +-2°+276 +2 3,

giving us the required sum of rational powers of 2.
Solution 3 by: Jeffrey Manning (10/CA)

Notice that if x # 0, then the sum z3 + 2? + z + 1+ 27! + 272 is a geometric series with
common ratio 2! and initial term 3. If x # 1, then we can use the formula for a geometric
series to get

3 —6 3 .3 3 —3,.3 6
3., .2 1, w2 at—a (@ —a)? 2t -1
r+rt+r+l+r 7= l—21  1-21 (I1—2123 23—q2

Applying this formula with 2 = 26 gives

1 - 2t —1
\/‘_ \3/5 T 91/2 _91/3
(21/6)6 -1

(21/6)3 — (21/6)2
— (21/6)3 + (21/6)2 + 21/6 +14+ (21/6)71 + (21/6)72
— 21/2 4 21/3 4 21/6 4 20 + 2—1/6 + 2—1/3'



USA Mathematical Talent Search
U S A MT S Solutions to Problem 3/2/17

www.usamts.org

3/2/17. An equilateral triangle is tiled with n? smaller
congruent equilateral triangles such that there are n smaller
triangles along each of the sides of the original triangle. The
case n = 11 is shown at right. For each of the small equilat-
eral triangles, we randomly choose a vertex V' of the triangle
and draw an arc with that vertex as center connecting the
midpoints of the two sides of the small triangle with V' as

an endpoint. F'md, with pron7 the expected value of the AVA ”‘"“"" v"’y"
number of full circles formed, in terms of n. AN AN

Credit This problem was proposed by Richard Rusczyk.

Comments Trying to count in how many cases the circles appear gets very complicated,
as these cases are not independent. (In other words, whether a circle appears at one vertex
affects whether a circle can appear at adjacent vertices.) However, a fundamental property
of expected value is that the expected value of a sum is simply the sum of the expected
values, a property mentioned in our Expected Value article. Once you see this, the problem
actually becomes quite easy. Solutions edited by Naoki Sato.

Solution 1 by: Derrick Sund (12/WA)

Consider a vertex in such a triangle that has six small triangles around it. Each of these

triangles has a % probability of its arc being the arc of a circle centered on that vertex.

Therefore, the probability that that vertex has a full circle around it is 3% = %. To get
the expected value of the number of full circles, we simply need to multiply this probability
by the number of vertices that can have full circles around them. If the original triangle is

divided into n? smaller triangles, then the number of such vertices will be

(n—1)(n—2)
5 ,

m=—2)4n=-3)+n—4)+---+2+1=

so the desired expected value is

(n-—1mn-2) 1 _ (n—l)(n—Q).
2 729 1458
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4/2/17. A teacher plays the game “Duck-Goose-Goose” with his class. The game is played
as follows: All the students stand in a circle and the teacher walks around the circle. As he
passes each student, he taps the student on the head and declares her a ‘duck’ or a ‘goose’.
Any student named a ‘goose’ leaves the circle immediately. Starting with the first student,
the teacher tags students in the pattern: duck, goose, goose, duck, goose, goose, etc., and
continues around the circle (re-tagging some former ducks as geese) until only one student
remains. This remaining student is the winner.

For instance, if there are 8 students, the game proceeds as follows: student 1 (duck),
student 2 (goose), student 3 (goose), student 4 (duck), student 5 (goose), student 6 (goose),
student 7 (duck), student 8 (goose), student 1 (goose), student 4 (duck), student 7 (goose)
and student 4 is the winner. Find, with proof, all values of n with n > 2 such that if the
circle starts with n students, then the n'" student is the winner.

Credit This problem was proposed by Mathew Crawford.

Comments Adam Hesterberg nicely solves the problem by modifying the game slightly to
one that has a recursive nature. Solutions edited by Naoki Sato.

Solution 1 by: Adam Hesterberg (11/WA)

We claim that the n'" student is the winner if and only if n of the form 3¥ —2 or 2-3% — 2,
where k£ is a positive integer.

Suppose that the game was actually “Goose-Goose-Duck,” and there were two more
people at the start of the circle. This game is equivalent to “Duck-Goose-Goose,” since the
two new people will be tagged immediately, and the pattern is equivalent to “Duck-Goose-
Goose” from there. In the first round, people numbered with multiples of 3 survive, so either
the winner is a multiple of 3, or there are only two people left and he is one of them.

In the latter case, the game ends with that round. In the former case, if the winner is a
multiple of 3, then the first two people in the next round will be tagged, and the third will
live. In general, if the last person survived the (k — 1) round, then the survivors of the
k™™ round will be the multiples of 3*. Therefore, for the last person to be the final survivor,
he must have the greatest power of 3 as a factor. In case there are two numbers with the
same greatest power of 3 as a factor, the lower number gets tagged earlier, so the last person
would still win. Therefore, the possible numbers for the last person are 3¥ and 2 - 3*-greater
multiples of 3* would produce someone with a greater power of 3. Subtract 2 to revert to
the original game, getting n =3 —2orn =2-3% — 2,
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5/2/17.  Given acute triangle AABC' in plane P, a point () in space is defined such
that ZAQB = ZBQC = ZCQA = 90°. Point X is the point in plane P such that QX is
perpendicular to plane P. Given ZABC = 40° and ZACB = 75°, find ZAXC.

Credit This problem was proposed by Sandor Lehoczky.

Comments The key insight in this problem is to realize that X is the orthocenter of triangle
ABC'. This, in turn, can be proven by showing that () must lie on certain spheres. Once
you identify that the point X is the orthocenter, the rest of the problem becomes an easy
angle chase. Solutions edited by Naoki Sato.

Solution 1 by: Philip Shirey (12/PA)

It is well known that in two dimensions, given points A and B, the locus of points P
such that ZAPB = 90° is the circle with diameter AB. (See diagram below.) The three-
dimensional locus, such as in this problem, is a sphere. Thus, point () is the intersection of
three spheres.

We can better visualize the intersection of the three spheres by taking their intersection
with the plane P.

The triangle shown above is acute, so each circle interesects with the adjancent segments.
As mentioned in the above theorem, any point on a circle will form a right triangle with its
diameter. Because of this, these intersections form the altitudes of the triangle.
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The intersection of two spheres is a circle. In the 2D representation of our 3D figure,
these circles would be perpendicular to the plane of the page, which means they would be
shown as segments in the 2D image. The endpoints of these segments are the interesections
of the projected spheres (i.e., the circles). So, the altitudes represent the intersections of the
spheres. As point X lies on plane P, X is the intersection of the altitudes, otherwise known
as the orthocenter.

Lastly, ZAXC = 140° because the congruent angle on the opposite side of X forms a
quadrilateral with two 90° angles with ZABC', which is 40°. So ZAXC = 180° —40° = 140°.

Solution 2 by: Tan Zou (10/IN)

Let Pacq be the plane of ANACQ. Draw a line through B and X such that it intersects
side AC' at point E. Draw EQ and let Pggg be the plane of ABEQ. Then BQ L AQ and
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BQ L CQ, so Pprg 1 Pacg. Hence, BE 1 AC, because BE and AC are in Pprg and
Pacq, respectively.

Similarly, if we draw AD and CF through point X, we can prove that they are perpen-
dicular to BC' and AB, respectively. Therefore, X is the orthocenter of AABC'.

We know that if H is the orthocenter of AABC, then ZA+ ZBHC = 180°. To see this,
let /A =460. Then ZABH =90° — 0, s0 /BHF =0, and ZBHC = 180° — 6.

Since X is the orthocenter and /B = 40°, ZAXC = 180° — 40° = 140°.

Solution 3 by: Zhou Fan (12/NJ)

Let X be the origin of coordinate space, and let us use the notation a for the vector from
point X to point A, etc.

Since QX is perpendicular to the plane containing ABC,
§-a=q-b=q-¢=0.
Since ZAQB = Z/BQC = ZCQA = 90°,
— @) (=0 =(G=b) (-8 = (7~ (7-a)=0.

Expanding (by the distributive property of dot products) and substituting 0 for ¢-a, q- I;,
and 7-Cgives@-b=0b-¢=¢-d=—|¢% ButifGd-b=a-¢ thend- (b—é) =0, so AX is
perpendicular to BC'. Similarly, BX and C'X are perpendicular to AC' and AB, respectively,
so X is the orthocenter of ABC.

Let C' X intersect AB at (' and AX intersect BC' at Ay; then AAC; X = AAA; B because
LACYX = LAA B = 90°. Therefore, ZAXC, = ZABA; = 40°, and ZAXC = 140°.



