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1/1/17. An increasing arithmetic sequence with infinitely many terms is determined as
follows. A single die is thrown and the number that appears is taken as the first term. The
die is thrown again and the second number that appears is taken as the common difference
between each pair of consecutive terms. Determine with proof how many of the 36 possible
sequences formed in this way contain at least one perfect square.

Credit This problem was taken from the book “St. Mary’s College Mathematics Contest
Problems.”

Comments This is a straight-forward problem using modular arithmetic, requiring only
some basic casework. We would like to point out that technically, the term “quadratic
residue” only applies when the modulus is prime, and 0 is not included. For example, the
quadratic residues modulo 7 are 1, 2, and 4. Otherwise, the term “square” modulo m should
be used. Solutions edited by Naoki Sato.

Solution 1 by: Derrick Sund (12/WA)

Note: throughout this problem, I will use (a,b) to denote the infinite arithmetic sequence
obtained from first rolling the number a, and then rolling the number b.

It is a well-known fact that if 7 is a quadratic residue (mod 7), there are infinitely many
perfect squares congruent to ¢ (mod j), and that if k£ is not a quadratic residue (mod j),
then there are no perfect squares congruent to k& (mod j). Thus, if a is a quadratic residue
(mod b), then the sequence (a,b) (which consists of all numbers greater than or equal to a
which are congruent to a (mod b)) must contain a perfect square, and likewise, if a is not a
quadratic residue (mod b), the sequence (a, b) cannot contain a perfect square.

Therefore, the sequence (a, b) will contain a perfect square if and only if a is a quadratic
residue (mod b). Since it is also well-known that you can determine all quadratic residues
(mod n) simply by squaring all numbers from 1 to n, inclusive, and finding their residues
(mod n), we can finish the problem by finding the quadratic residues for mods 2, 3, 4, 5, and
6 ((mod 1) need not be considered, since (a, 1) trivially contains all perfect squares greater
than or equal to a).

The quadratic residues (mod 2) are 0 and 1. Therefore, (1,2), (2,2), (3,2), (4,2), (5,2),
(6,2) all contain perfect squares.

The quadratic residues (mod 3) are 0 and 1. Therefore, (1,3), (3,3), (4,3), (6,3) all con-
tain perfect squares, while (2,3), (5,3) do not.
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The quadratic residues (mod 4) are 0 and 1. Therefore, (1,4), (4,4), (5,4) all contain
perfect squares, while (2,4), (3,4), (6,4) do not.

The quadratic residues (mod 5) are 0, 1, and 4. Therefore, (1,5), (4,5), (5,5), (6,5) all
contain perfect squares, while (2,5), (3,5) do not.

The quadratic residues (mod 6) are 0, 1, 3, and 4. Therefore, (1,6), (3,6), (4,6), (6,6) all
contain perfect squares, while (2,6), (5,6) do not.

Thus, since 6 is the highest number that a die can roll, we have 27 sequences with perfect
squares: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (1,3),
(3,3), (4,3), (6,3), (1,4), (4,4), (5:4), (1,5), (4,5), (5,5), (6,5), (1,6), (3,6), (4,6), (6,6).

Solution 2 by: Jeff Nanney (12/TX)

Denote the result of the first die toss d. Denote the result of the second die toss a.
Naturally, a,d € N such that 1 < a,d < 6. We now seek to determine which ordered pairs
(a,d) will yield at least one perfect square of the form a(n — 1) + d, where n € N. Though a
variety of approaches are available, the most natural is to examine the 6 cases according to
the values of a. In particular, we will use the basic property that squaring all the members
of a residue system yields each possible residue for a perfect square in that modulus. In
general, we are seeking to find a solution in positive integers to the equation an + d = 2,

which is equivalent to finding for which d there exists some x such that 22 = d (mod a).

1. Let @ = 1. Thus, for 1 < d < 6, we must find some integer  such that 2% = d (mod 1).
Since all positive integers are congruent modulus 1, we know that all d are candidates
to produce perfect squares in the sequence. To verify, we implement a simple check, im-
mediately noting that 9 is a perfect square attainable by all the sequences, regardless of
the value of d. Thus, we have 6 sequences so far for which a perfect square is produced.

2. Let a = 2. For 1 < d < 6, we must find some integer z such that z*> = d (mod 2).
Because 0?2 = 0 and 12 = 1, and all members of the residue system are perfect squares,
we know that all d are candidates to produce perfect squares in the sequence. To verify,
we implement a simple check, immediately noting that 9 is a perfect square attainable
when d is odd, and 16 is a perfect square attainable when d is even. Thus, we have 6
more sequences for which a perfect square is produced.

3. Let a = 3. For 1 < d < 6, we must find some integer = such that z*> = d (mod 3).
Because 02 = 0, 12 = 1, and 22 = 1 (mod 3), we know that d = 0,1 (mod 3), or
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d=1,3,4,6, are candidates to produce perfect squares in the sequence. To verify, we
implement a simple check, noting that 9 is a perfect square attainable when d = 0
(mod 3), and 16 is a perfect square attainable when d = 1 (mod 3). Thus, we have 4
more sequences for which a perfect square is produced.

4. Let a = 4. For 1 < d < 6, we must find some integer = such that 2> = d (mod 4).
Because 02 =0, 12 =1, 22 =0 (mod 4), and 32 =1 (mod 4), we know that d = 0,1
(mod 4), or d = 1,4,5, are candidates to produce perfect squares in the sequence. To
verify, we implement a simple check, noting that 16 is a perfect square attainable when
d =0 (mod 4), and 9 is a perfect square attainable when d = 1 (mod 4). Thus, we
have 3 more sequences for which a perfect square is produced.

5. Let a = 5. For 1 < d < 6, we must find some integer x such that 22 = d (mod 5). Be-
cause 0> =0, 12 =1, 22 =4 (mod 5), 32 =4 (mod 5), and 4> = 1 (mod 5), we know
that d = 0,1,4 (mod 5), or d = 1,4,5,6, are candidates to produce perfect squares
in the sequence. To verify, we implement a simple check, noting that 25 is a perfect
square attainable when d = 0 (mod 5), 16 is a perfect square attainable when d = 1
(mod 5), and 4 is a perfect square attainable when d = 4 (mod 5). Thus, we have 4
more sequences for which a perfect square is produced.

6. Let a = 6. For 1 < d < 6, we must find some integer z such that > = d (mod 6).
Because 02 = 0, 12 = 1, 22 = 4 (mod 6), 32 = 3 (mod 6), 4> = 4 (mod 6), and
52 = 1 (mod 6), we know that d = 0,1,3,4 (mod 5), or d = 1,3,4,6, are candidates
to produce perfect squares in the sequence. To verify, we implement a simple check,
noting that 25 is a perfect square attainable when d = 1 (mod 6), 9 is a perfect square
attainable when d = 3 (mod 6), 16 is a perfect square attainable when d = 4 (mod 6),
and 36 is a perfect square attainable when d = 0 (mod 6). Thus, we have 4 more
sequences for which a perfect square is produced.

Combining the conclusions from each of the above 6 cases, we find that of the 36 possible
sequences, exactly 6 +6 + 4 + 3 + 4 + 4 = 27 sequences contain at least one perfect square.
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2/1/17. George has six ropes. He chooses two of the twelve loose ends at random (possibly
from the same rope), and ties them together, leaving ten loose ends. He again chooses two
loose ends at random and joins them, and so on, until there are no loose ends. Find, with
proof, the expected value of the number of loops George ends up with.

Credit This problem, or some variation, is often used in interviews for quantitative positions
on Wall Street.

Comments The easiest approach, as the solution by James Sundstrom illustrates, is to
develop a recursive formula for the number of expected loops formed when starting with n
ropes. However, it is also possible to find the expected value by counting all possible loops.
This was done in a clever way by Scott Kovach. Solutions edited by Naoki Sato.

Solution 1 by: James Sundstrom (11/NJ)

Let E,, denote the expected value of the number of loops from this process starting with
n ropes. Then we have the following lemma:

Lemmea. For all natural numbers n, £, = E,,_1 + T1—1

Proof. If the process starts with n ropes, after one loose end is selected there are 2n — 1
loose ends remaining, giving a probability of ﬁ that the other end of the same rope will
be selected as the second choice. If this occurs, there is one loop already formed and n — 1
loose ropes left, so the expected value for the number of loops formed is 1 + E,,_;. There is
a probability of 32:? that an end of a different rope will be chosen, leaving n — 1 ropes (1
longer one and n — 2 short ones). Then the expected value of the number of loops is E,,_;.

Combining the two possibilities gives:

1 2n — 2
E, = 1+ B, E,_
n= gy XU Ene) o X B
1 1 2m-2
- E,_
2n—1+(2n—1+2n—1)x !
L1
St o~
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It is obvious that £} = 1, so we have:

4
E2:]-+ :§7
4 23
Fo = — E—
3=3 7 15’
23 176
B, = — - - -
YT T T 105
g 6 1563
105 ' 9 315
563 1 6508
Be=o-2 4 — =2
315 ' 11 3465

Therefore, if George has six ropes which he ties together by randomly selecting two loose

ends at a time to tie together, the expected value of the number of loops he will end with is
6508
3465

Solution 2 by: Scott Kovach (10/TN)

First consider the number of different ways to tie n ropes together. The first tie can be
done in (22”) ways, leaving 2n — 2 loose ends. The next can be done in (2"2_ 2) ways, the next
in (2"2_ 4), and so on. The order that the ties are made doesn’t matter, however, so we must

divide the product of these binomial coefficients by n!. The number of ways therefore is
(2n)!

f(n) = (2271) (2n2_n2!) o @) _ 202n-2)! ) 2(;71_4)! )

(2n—2)! 21

208 _ (2n)!
2npl’

Now consider the number of ways to tie n ropes together to make a loop. The ropes can
be sequentially tied to each other in any order, so there are (n — 1)! ways to order them.
The first end of the first rope can be tied to either end of the second, the remaining end of
the second to either end of the third, and so on. There are 2"~ ways to do this, so the total
number of ways to tie the n ropes together into a single loop is g(n) = 2" (n — 1)!.

Finally, we count the total number of loops among all the possible tyings. There are
(?) ways to choose one rope and g(1) ways to tie it into one loop, and f(5) ways to tie the
remaining ropes together. Similarly, there are (g) ways to choose two ropes, g(2) ways to
tie them into one loop, and f(4) ways to tie the other four ropes together. Extending this

process counts every possible loop of any size. The total number of loops is

> (Z)g(k)f((i — k) = 19524.

6
k=1
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There are f(6) = 10395 tyings, so the expected value is
19524 6508

10395 3465
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3/1/17. Let r be a nonzero real number. The values of z which satisfy the equation
ri2t 4 (10r% — 2r%)2% — 1672 + (9r® + 10r* +1) = 0

are plotted on the complex plane (i.e. using the real part of each root as the z-coordinate
and the imaginary part as the y-coordinate). Show that the area of the convex quadrilateral
with these points as vertices is independent of r, and find this area.

Credit This problem was proposed by Dave Patrick of AoPS and Erin Schram of the NSA.

Comments Many students seem to have been intimidated by the complicated looking
quartic equation and the setting of the complex plane. The first step is to find the factors
of the quartic. This is really the bulk of the problem, and was accomplished with a variety
of approaches, as the following solutions illustrate. The next step is to plot the roots in
the complex plane, which are found to form a trapezoid. Some students merely plugged the
quartic into software such as Mathematica, but you still need to show justification that the
roots so produced are in fact correct. Solutions edited by Naoki Sato.

Solution 1 by: Daniel Jiang (11/IN)

The constant coefficient of the equation can be factored so that the equation becomes:
rizt + (10r% — 2r%) 22 — 16r°2 4+ (9r* + D)(r* +1) = 0.

Factoring would lead us to the roots of the equation as a function of r. From what we have
so far, we can see that the factors of the equation may look like

222+ (P D[P (9 1)

The given equation has powers of 2%, 22, and z, so at this stage, we let the factors take the
form
(222 +az + (r* + 1)][r?2* + bz + (97* + 1)].

Expanding, we get:
r2t 4 (ar® + br?) 2% + (10r° + 2r® + ab)z® + (a + b+ 9ar® + br')z + (9r® + 107" 4+ 1) = 0.

Comparing this to the given equation, we know that there is no 2z® term, so a + b = 0, and
from the 2% term, we see that ab = —4r?. Using these, it is easy to see that (a,b) = (—2r, 2r)
or (2r, —2r), but then testing in the z term, we see that a must be —2r, so (a,b) = (=2r,2r).

The factored form of the equation is then

(r’z? —2rz +r* + 1) (r?22 + 2rz + 9r* 4 1) = 0.
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Now the quadratic formula can be applied to each of the quadratic factors, which gives us
the four roots as: 7% + r7 and —% =+ 3ri.

Plotting the points (%, r) , (%, —7") , (—%, 3r) , (—%, —3T), we have a trapezoid with two
bases of length |6r| and |2r| and a height of |f—| The area of a trapezoid is 2£22 - h, so the area

is @ . % = 8. The r cancels out; thus, the area of this convex quadrilateral is 8 independent
of r.

Solution 2 by: Joshua Horowitz (11/CT)

The given expression can be written and factored as the difference of two squares:

2t 4+ (1008 — 2r?)2% — 167°2 + (9 + 100" + 1) =0
= [P+ Grt+ D)) = 2rz + 442 =0
= [r?2% + 2r2 + (9" + D][r?2? = 2r2 + (1 + 1)) = 0.

So the roots of the original equation are the roots of P(z) = 7?22 +2rz+ (9r* +1) combined
with the roots of Q(z) = r?2?2 — 2rz + (r* + 1). Each of these is a quadratic with real
coefficients. The quadratic P has discriminant —367% and the quadratic ) has discriminant
—47°. Both of these are negative (since r is a nonzero real) so the roots of P and the roots
of @) form conjugate pairs.

Using the quadratic formula we can compute a root p = —% + 3ri of P and a root
q= % + ri of Q. These two roots and their conjugates will form an isosceles trapezoid with
the real axis as an axis of symmetry. The area of this trapezoid (the desired answer to this
problem) will be the height times the sum of half the bases:

2 2
Rep = Reql (gl + ma) = 2| 371+ 1) = |2 ar] = .

where Re z and Im z denote the real and imaginary parts of the complex number z, respec-
tively.

Solution 3 by: Linda Liu (11/GA)

We have that

rizt 4 (10r° — 2r%)22 — 167°2 + (9% + 10r* +1) = 0

= 2t (6r° — 227 4+ 9r® —6rt 4 14+ 4r%2% —16r°2 + 167" = 0
= it 42030t — D)2+ (3t — 12+ (2732 — 4r?)? =0

= (r222 4+ 3r* — 1)+ (2r*z — 4r%)? = 0,
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" (r?z2 +3rt — 1) = —(2r®z — 41?2
Taking the square root of both sides gives the two equations
222 43t — 1= (22 —4r?)i = 22— 2%+ 3t At - 1 =0,
and

22 43t — 1= —(2r% —4rh)i = 224 20% + 3t — 4% -1 =0.
Applying the quadratic formula to the first quadratic equation produces the roots

1 . 1 )
—— +3r¢ and - —ri.
r r

Applying the quadratic formula to the second quadratic equation produces the roots

1 . 1 )
—— —3r¢ and - +ri.
r T

These four complex numbers then form a trapezoid with height 2/|r| and bases |2r| and
|67|, so the area of the trapezoid is
2
2l tfor] 2
2 r
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4/1/17. Homer gives mathematicians Patty and Selma each a different integer, not known
to the other or to you. Homer tells them, within each other’s hearing, that the number given
to Patty is the product ab of the positive integers a and b, and that the number given to
Selma is the sum a + b of the same numbers a and b, where b > a > 1. He doesn’t, however,
tell Patty or Selma the numbers a and b. The following (honest) conversation then takes
place:

Patty: “I can’t tell what numbers a and b are.”

Selma: “I knew before that you couldn’t tell.”

Patty: “In that case, I now know what a and b are.”

Selma: “Now I also know what a and b are.”
Supposing that Homer tells you (but neither Patty nor Selma) that neither a nor b is greater
than 20, find a and b, and prove your answer can result in the conversation above.

Credit This problem comes from the Carnegie Mellon Math Studies Problem Seminar.

Comments What makes this problem tricky is that it’s not just a problem: It’s a problem
inside a problem. It requires you to place yourselves in the shoes of Patty and Selma, and
not only make the same deductions they make, but deduce which conditions could have
led to those deductions. Some careful casework leads to the answer. Note that in the
following solutions, Meir Lakhovsky shows that (a,b) = (4,13) is a viable solution, and
Jeffrey Manning shows that it is the only solution. Solutions edited by Naoki Sato.

Solution 1 by: Meir Lakhovsky (10/WA)

Some trial and error leads us to a = 4, b = 13. Let us show that the conversation
mentioned could take place. Patty was given the number 52 and Selma was given the
number 17.

Patty said, “I can’t tell what numbers a and b are,” which is true since the product 52
could be achieved through either the numbers (2,26) or (4,13).

Selma answers “I knew before that you couldn’t tell,” which is also true, since for each
possible pair (a,b) that adds up to 17, namely (2,15), (3,14), (4,13), (5,12), (6,11), (7,10),
and (8,9), there are at least two possible solutions that give rise to the product ab.

Patty then says, “In that case, I now know what a and b are,” which is true because
if (a,b) was equal to (2,26), then Selma would have had the number 28, which means she
could not have made her former statement because (a,b) could have been (5,23) in which
case Patty would have been able to figure out what a and b are before any statements were
made. Since Patty knows the product is 52 and (a, b) is not (2,26), she knows that (a,b) is
(4,13), the only other option.
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Selma now says, “Now I also know what a and b are,” which is true since the only pair
from (2,15), (3,14), (4,13), (5,12), (6,11), (7,10), and (8,9) in which Patty could have made
her later statement is (4,13) (reasoning shown above). Let us show why (2,15), (3,14), (5,12),
(6,11), (7,10), and (8,9) don’t work. If (2,15) were the numbers, then Patty would have had
the number 30 and would not have been able to make her later statement since both (2,15)
and (5,6) yield sums for which Selma would have been able to make her former statement.
Likewise, for (3,14), Patty would not have been able to make her statement since both (3,14)
and (2,21) yield sums for which Selma would have been able to make her former statement.
By the same logic, the pair for (5,12) is (3,20); the pair for (6,11) is (2,33); the pair for (7,10)
is (2,35); and the pair for (8,9) is (3,24).

Thus, (a,b) = (4,13) could have resulted in the described conversation.
Solution 2 by: Jeffrey Manning (10/CA)

Notice that Patty could tell what a and b were if and only if there is exactly one way to
factor ab into the product of two distinct integers, both greater than one (for the rest of the
solution we will use the word factorization to mean factorization into two distinct factors
both greater than 1), in that case a and b are the two factors. This would only happen when
ab = pq where p and ¢ are primes, in which case a and b would be p and ¢ or when ab = p?
where p is prime, in which case a = p* and b = p.

For Selma to already know that Patty couldn’t tell what a and b were, it must be
impossible to write a + b as the sum of two distinct primes or as the sum of a prime and
its square. Since a + b < 40, the possible values for a 4+ b are 11, 17, 23, 27, 29, 35, and 37
(notice that we do need to consider primes and squares of primes greater than 20 because
Selma doesn’t know that a,b < 20).

For the third line of the conversation to be true, there must be exactly one factorization
of ab such that the sum of the factors cannot be written as the sum of two distinct primes or
as the sum of a prime and its square. If a,b > 1, then (a —1)(b—1) =ab— (a+b)+1 > 0,
so a+ b < ab+ 1, so Patty knows that a + b < 401. This means Patty knows that a + b is
either odd or twice a prime (Goldbach’s conjecture states that any even integer > 4 is the
sum of two primes, not necessarily distinct. Although this has not been proven, it has been
verified for all values we are concerned with). So we only need to consider factorizations of
ab such that the sum of the factors is not divisible by 4 (we can’t have a + b = 2(2) = 4
because that would mean ab is 3 or 4). Notice that if ab = 4p where p is an odd prime, then
the only possible values of a and b are 4 and p.

For the fourth line to be true there must be only one way to write a + b as the sum of
two numbers (> 1) whose product satisfies these conditions.

We have:
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Ifa+b=11=44+7=2+9, then we could have ab = 28 or 18.
Ifa+b=23=4+19 =7+ 16, then we could have ab = 76 or 112.
Ifa+b=27=4+4 23 =2+ 25, then we could have ab = 92 or 50.
Ifa+b=29=13+ 16 = 2+ 27, then we could have ab = 208 or 54.
Ifa+b=35=4+431=32+ 3, then we could have ab = 124 or 96.
If a+b=37=84+29 =232+ 5, then we could have ab = 232 or 160.

We will show that each of these possible values of ab satisfy the conditions for the third
line to be true. The numbers 28, 76, 92 and 124 are all in the form 4p so they all work.

If ab = 18 = 2 - 3 - 3 then the only factorization, other than 2 -9, is 3 - 6 which gives
a+b=9=24T7.

If ab =50 = 2-5-5 then the only factorization, other than 2 - 25, is 5 - 10 which gives
a+b=15=2+13.

If ab =54 =2-3-3-3 then the only factorizations, other than 2-27, are 6 -9 which gives
a+b=15=2+13, and 3 - 18 which gives a + b =21 =2 + 19.

If ab= 112 =2-2-2-2-7 then the only factorizations other than 7-16 such that 4 f a+b,
are 8 - 14 which gives a +b =22 =5+ 17, and 2 - 56 which gives a + b = 58 = 5 + 53.

If ab = 208 = 2-2-2-2-13 then the only factorizations other than 1316 such that 4 { a+b,
are 8 - 26 which gives a + b = 34 = 3 4+ 31, and 2 - 104 which gives a + b = 106 = 47 + 59.

If ab=96 = 2-2-2-2-2-3 then the only factorizations other than 3-32 such that 4 a+b,
are 6 - 16 which gives a +b =22 =5+ 17, and 2 - 48 which gives a + b = 50 = 19 + 31.

Ifab=160 =2-2-2-2-2-5 then the only factorizations other than 5 - 32 such that
4t a+b, are 10-16 which gives a+b = 26 = 3+ 23, and 2-80 which gives a+b = 82 = 29+53.

If ab=232=2-2-2-29 then the only factorizations, other than 8 - 29, are 4 - 58 which
gives a+b=62=3+59, and 2 - 116 which gives a +b =118 =5+ 113.

Therefore a + b = 11, 23, 27, 29, 35, and 37 don’t satisfy the fourth line, so a + b = 17.
Thus the possible ordered pairs (a, b) are:

5) = ab = 30, but this can be factored as 5-6 and 5+ 6 = 11.

4) = ab = 42, but this can be factored as 2 - 21 and 2 + 21 = 23.

4,13) = ab = 52, which can be written in the form 4p so it satisfies the third line.
5,12) = ab = 60, but this can be factored as 3 - 20 and 3 + 20 = 23.

6,11) = ab = 66, but this can be factored as 2 - 33 and 2 + 33 = 35.

7,10) = ab = 70, but this can be factored as 2 - 35 and 2 + 35 = 37.

8,9) = ab = 72, but this can be factored as 3 - 24 and 3 + 24 = 27.

1
1
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Thus the only value of ab that satisfies the third line is 52, so a + b = 17 satisfies the
fourth line. Thus the only possible value of (a,b) is (4,13).
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5/1/17. Given triangle ABC, let M be the midpoint of side AB and N be the midpoint
of side AC. A circle is inscribed inside quadrilateral NM BC, tangent to all four sides, and
that circle touches M N at point X. The circle inscribed in triangle AM N touches M N at
point Y, with Y between X and N. If XY =1 and BC = 12, find, with proof, the lengths
of the sides AB and AC.

Credit This problem was proposed by Richard Rusczyk.

Comments This geometry problem is best solved using a “side chase” (as opposed to an
“angle chase”), in which the relations between lengths of line segments are written down until
there are a sufficient number of them that they can be solved algebraically. Any approach of
this kind will almost inevitably lead to the answer. But this is not the only possible approach,
as the following solutions will show. We recommend that when submitting a solution to a
geometry problem to also provide a diagram, so that the grader does not have to draw one.
Solutions edited by Naoki Sato.

Solution 1 by: Tony Liu (11/IL)
Let AB and AC be tangent to the incircle of AAMN at D and E. Similarly, let AB

and AC' be tangent to the circle inscribed in MNCB at P and ). Let AC = 2b, AB = 2c.
Note that MN =1.BC =6, and let s = (b + ¢+ 6) be the semiperimeter of AAMN.

B

Because M NC'B has an inscribed circle, MN 4+ BC = M B+ NC, or b+c = 18. By equal
tangents around the incircle of AAM N, it is easy to see that MY =s—band NY = s —c.
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For example,

2-MY =MY + MD
=(AM — AD)+ (MN —YN)
=AM — AE+ MN — EN
=AM + MN — AN
=AM + MN + AN — 2AN
=2s—2b

= MY =s5—b.

Moreover, the circle inscribed in M NCB is the excircle of AAM N, opposite of A. This
implies that NX = MY . Indeed, we have

2-AP = AP + AQ
= (AM + MX)+ (AN + NX)
= 2s
= AP = AQ = s.

Thus, MY =s—b=AQ — AN = N = NX. From this, we have 1 = XY = NX — NY =
(s—b)—(s—c) = c—b. Combined with b+c = 18, we have AB = 2¢ = 19 and AC = 2b = 17.

Solution 2 by: Alan Deng (12/NY)

Let MX = aand NY = b. By properties of tangents to a circle and the fact that triangle
AMN is similar to triangle ABC' with a ratio of similitude of 1:2 (since M is the midpoint
of AB and N is the midpoint of AC'), we can label the following diagram on the left, except
for the length of T"H, where H is the foot of the altitude from A to BC.



USA Mathematical Talent Search

U S A MT S Solutions to Problem 5/1/17

www.usamts.org

2b+1

B 2a +2 T 2 H2»—2 CB c

The ratio of the radius of circle O to that of O’ is 2:1, since they are inscribed in similar
triangles of that ratio. The distance XY is 1. Draw a line M’N’ parallel to M N that is also
tangent to circle O', as shown in the diagram on the right. We also have points X’ and Y’
on M'N’ that correspond to points X and Y on M N. In fact, X’ and Y’ are the images of
X and Y, respectively, of the similitude through A by ratio 1:2, so X'Y’ = XY/2 = 1/2.
Furthermore, X'Y is parallel to AH since M'N'" and M N are parallel tangents to circle O’.

If we continue this process of drawing tangents and circles towards point A, we obtain line
segments of length 1, 1/2, 1/4, 1/8, and so on, and the union of their orthogonal projections

onto BC'is TH. Hence,

11 1
TH=14-4~+=-+-=2,
tstitgt

Now, we have two right triangles ABH and AC'H that share the same height. Then

AB? — BH?* = AH* = AC* — CH?
= (6a+4)* — (2a +4)* = (6b+2)* — (2b — 2)?
= 32a% + 32a = 32b% + 320
= 4a® + 4a = 4b* + 4b
= 4a’>+4da+1=4v+4b+1
= (2a+1)* = (2b+1)?,
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so a = b. Since BC' = 2a+2b+2 =12, a = b = 5/2. Hence, AB = 6a + 4 = 19 and
AC =6b+2=17.

Solution 3: Based on the solution by Logan Daum (11/AK)

By the side chasing argument in Solution 1, we get that M X = NY. (For example,
this follows immediately from MY = NX.) Since XY = 1 and MN = 6, we have that
MX = NY =5/2, and we can argue that TH = 2 as in Solution 2. (Actually, Logan argues
this in a more direct way than Alan. Let Z be the intersection of AH and M N. What do
you notice about triangles AZY and TXY?)

Now, T is the image of Y under the homothety through A by a factor of 2, so CT =
2NY =5, which means BT = BC' — CT =12—-5=17. Also, CH = CT —TH = 3 and
BH = BC —CH =0.

A

B 7 T2 H 3 C

Let r be the inradius of triangle ABC so the height of trapezoid BM NC'is 2r, so then
the height of triangle ABC'is AH = 4r. Then

tanE = g S
2 BT 7

and
tan B = A—H = 4_r

BH 9
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By the double angle formula,

tan B — 2tan(B/2) .
1 — tan?(B/2)
Substituting, we obtain
r2r/T  1dr
91— (r/7)2 49— 2
= 196 — 4r* = 126
= 1= @ = %
4 2
= = %
2
4r 4 [35  2V/70
=tanB=—=—{/ — = ——.
9 9V 2 9

Since tan B is positive, B is acute. Also,

cos’ B =

SO

Hence,

Similarly,

cos’ B
cos? B +sin? B
1
1 + sin? B

cos? B

1

1+ tan? B
1

T Im
14350
81
361°
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so C' is also acute, and

SO

Hence,

1
2
C’i
o8 1+ tan2C
o
= 7
14 %2
9
289’
9 3
C: _—
o8 289 17
AH
AC = 3 a7



