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1/4/15. Find, with proof, the smallest positive integer n for which the sum of the digits of 29n is as small as
possible.

This problem was fashioned after Problem 3 of the 2nd Lithuanian Olympiad administered
at Vilnius University on September 30, 2000.

We search for 29n rather than directly for n. Numbers with only a single nonzero digit are
that digit times a power of ten, which would not be divisible by 29. Of the numbers with two
nonzero digits, the smallest digit sum occurs with both nonzero digits being 1. The smallest
such number must begin and end in 1, because if it ended in zero, we could divide by 10. So
we are looking for the smallest integer of the form 10e + i that is a multiple of 29.

The powers of 10 mod 29 are 1, 10, 13, 14, 24, 8, 22, 17, 25, 18, 6, 2, 20, 26, 28, 19, 16, 15,
5, 21, 7, 12, 4, 11, 23, 27, 9, 3, 1, . . .. so 1014 ≡ 28 (mod 29). Therefore 1014 + 1 is divisible
by 29, and n = (1014 + 1)/29 = 3448275862069.

2/4/15. For four integer values of n greater than six, there exist right triangles whose side lengths are integers
equivalent to 4, 5, and 6 modulo n, in some order. Find those values. Prove that at most four such
values exist. Also, for at least one of those values of n, provide an example of such a triangle.

This problem was devised by Dr. Peter Anspach of the NSA, after a lunchtime conversation
among mathematicians about trying to create a (4, 5, 6) right triangle.

Let a, b, and c be the sides of such a right triangle, with a2 + b2 = c2. If c ≡ 4 (mod n),
then 52 + 62 ≡ 42 (mod n) so n is a factor of 52 + 62 − 42 = 45. If c ≡ 5 (mod n), then n is
a factor of 42 + 62 − 52 = 27. If c ≡ 6 (mod n), then n is a factor of 42 + 52 − 62 = 5, but
since n > 6, we can reject this case. Thus, n is a factor of 27 or 45, so n is 9, 15, 27, or 45.

Given an n, a triple (a, b, c) that forms a right triangle can be found by trial and error, by
applying number theory to an equation such as (9x + 5)2 + (9y + 6)2 = (9z + 4)2, or by the
(r(s2 − t2), 2rst, r(s2 + t2)) method of finding Pythagorean triples after solving for r, s, and
t that give the right values mod n. The first three solutions for each case are:

for n = 9 and c ≡ 4 (mod 9): (24, 32, 40), (51, 68, 85), (78, 104, 130);

for n = 9 and c ≡ 5 (mod 9): (40, 96, 104), (15, 112, 113), (60, 175, 185);

for n = 15 and c ≡ 4 (mod 15): (65, 156, 169), (140, 336, 364), (215, 516, 559);

for n = 27 and c ≡ 5 (mod 27): (168, 490, 518), (33, 544, 545), (814, 1248, 1490);

for n = 45 and c ≡ 4 (mod 45): (1176, 2975, 3199), (3920, 16926, 17374), (1760, 17556, 17644).
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3/4/15. Find a nonzero polynomial f(w, x, y, z) in the four indeterminates w, x, y, and z of minimum degree
such that switching any two indeterminates in the polynomial gives the same polynomial except
that its sign is reversed. For example, f(z, x, y, w) = −f(w, x, y, z). Prove that the degree of the
polynomial is as small as possible.

This problem was invented by Dr. David Grabiner, an NSA mathematician who helps with
the evaluation and grading of problems for the USAMTS.

Consider any two of the indeterminants, say w and x. If the standard form of f(w, x, y, z) has
a term kwaxbyczd, then it must have a matching term −kwbxayczd. Grouping them together
gives either k(wa−b − xa−b)wbxbyczd or k(xb−a −wb−a)waxayczd, which both are divisible by
w − x. Since the entire polynomial can be grouped this way, it is divisible by w − x.

Thus, for every pair of indeterminants, the polynomial is divisible by their difference. This
means f(w, x, y, z) is divisible by (w − x)(w − y)(w − z)(x − y)(x − z)(y − z). Letting
f(w, x, y, z) = (w−x)(w−y)(w−z)(x−y)(x−z)(y−z) keeps the degree to a minimum, and it
works because switching any two indeterminants in (w−x)(w−y)(w−z)(x−y)(x−z)(y−z)
gives the same polynomial except that its sign is reversed.

4/4/15. For each nonnegative integer n define the function fn(x) by

fn(x) = sinn(x) + sinn(x +
2π

3
) + sinn(x +

4π

3
)

for all real numbers x, where the sine functions use radians. The functions fn(x) can be also
expressed as polynomials in sin(3x) with rational coefficients. For example,

f0(x) = 3, f1(x) = 0, f2(x) =
3
2
, f3(x) = −3

4
sin(3x),

f4(x) =
9
8
, f5(x) = −15

16
sin(3x), f6(x) =

27
32

+
3
16

sin2(3x),

for all real numbers x. Find an expression for f7(x) as a polynomial in sin(3x) with rational coeffi-
cients, and prove that it holds for all real numbers x.

This problem was devised by the distinguished Hungarian mathematician and poet Mihály
Bencze of Brasso, Transylvania.

The triple angle formula for sine is sin(3x) = 3 sin(x) − 4 sin3(x). But since sin(3x) also
equals sin(3(x + 2π

3
)) and sin(3(x + 4π

3
)), it also expands to 3 sin(x + 2π

3
) − 4 sin3(x + 2π

3
)

and 3 sin(x + 4π
3

)− 4 sin3(x + 4π
3

). Thus, for all real numbers x,

fn(x) sin(3x) = sinn(x) sin(3x) + sinn(x +
2π

3
) sin(3x) + sinn(x +

4π

3
) sin(3x)

= sinn(x)
(
3 sin(x)− 4 sin3(x)

)
+ sinn(x +

2π

3
)
(
3 sin(x +

2π

3
)− 4 sin3(x +

2π

3
)
)

+ sinn(x +
4π

3
)
(
3 sin(x +

4π

3
)− 4 sin3(x +

4π

3
)
)

= 3
(
sinn+l(x) + sinn+l(x +

2π

3
) + sinn+l(x +

4π

3
)
)

− 4
(
sinn+3(x) + sinn+3(x +

2π

3
) + sinn+3(x +

4π

3
)
)

= 3fn+l(x)− 4fn+3(x).
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Setting n to 4 and rearranging gives f7(x) = 3
4
f5(x) − 1

4
f4(x) sin(3x) = (3

4
)(−15

16
) sin(3x) −

(1
4
)(9

8
) sin(3x) = (−63

64
) sin(3x).

5/4/15. Triangle ABC is an obtuse isosceles triangle
with the property that three squares of equal
size can be inscribed in it as shown on the right.
The ratio AC/AB is an irrational number that
is the root of a cubic polynomial. Determine
that polynomial. �
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This triangle was apparently discovered by the Italian mathematician Eugenio Calabi. It is
the only non-equilateral triangle into which we can fit three equal squares in this manner.
The triangle is displayed on page 266 of The Book of Numbers, by John H. Conway and
Richard K. Guy, published by Springer-Verlag in 1996.

Let s be the length of a side of the squares. By symmetry, AJ = MC, so 2(AJ) =
AC − JM = AC − s. AD = AB − BD = AB − s. Triangle AEJ is congruent to triangle
AKD, so AD = AJ . So AC − s = 2(AB − s), giving s = 2(AB)−AC and AJ = AC−AB.

Let P be the midpoint of side AC. Triangle AEJ is similar to triangle ABP . So AE/AJ =
AB/AP = 2(AB/AC). AE = 2(AC − AB)(AB/AC).

By the Pythagorean Theorem (AE)2 = (AJ)2 + s2, which converts to(
2(AC − AB)

(
AB

AC

))2

= (AC − AB)2 + (2(AB)− AC)2 (1)

(2(AC − AB)(AB))2 = (AC)2(AC − AB)2 + (AC)2(2(AB)− AC)2. (2)

Let x = AC/AB. Equation (2) converts to

4(x− 1)2 = x2(x− 1)2 + x2(2− x)2

(4− x2)(x− 1)2 − x2(2− x)2 = 0

(2− x)(x + 2)(x− 1)2 − x2(2− x)2 = 0

(2− x)
(
(x + 2)(x− 1)2 − x2(2− x)

)
= 0

(2− x)(2x3 − 2x2 − 3x + 2) = 0

By the triangle inequality, AC < AB + BC = 2(AB), so x < 2 and 2 − x 6= 0. Therefore,
AC/AB is the root of the cubic polynomial 2x3 − 2x2 − 3x + 2.
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