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solutions edited by Dr. Erin Schram 

1/3/14. The integer n, between 10000 and 99999, is abcde when written in decimal notation. 
The digit a is the remainder when n is divided by 2, the digit b is the remainder when n is 
divided by 3, the digit c is the remainder when n is divided by 4, the digit d is the remainder 
when n is divided by 5, and the digit e is the remainder when n is divided by 6. Find n. 

Comment: This problem is from a 1966 issue of Abacus, a Hungarian mathematics journal for 
middle school students. 

Solution for 1/3/14 by Tamara Broderick (12/OH): 

n = abcde .


a = n mod 2 ; therefore, a is equal to 0 or 1, but since n ≥ 10000, a is 1, and n is odd.


Given this restriction, since e = n mod 6 , it may be only {1 3 5} . When we divide e by 3,
, ,  
we get the same remainder as when we divide n by 3, so b = e mod 3 . Also, because d is the 
remainder when n is divided by 5, d is determined entirely by e, the last digit of n. 

e 1 3 5 

b 1 0 2 

d 1 3 0 

The remainder, c, when n is divided by 4 is determined by the last two digits of n (since 
100 mod 4 = 0 ). So c = de  mod 4 . 

de 11 33 05 

c 3 1 1 

Therefore, we have three possibilities for n: 

a 1 1 1 

b 1 0 2 

c 3 1 1 

d 1 3 0 

e 1 3 5 

The sum of the digits of n is congruent to n mod 3. Only in the first column of the above table is 
the sum of the digits, reduced mod 3, equal to b: (1 1 3 1 1) mod 3 = 1 . So n = 11311 .+ + + +  
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2/3/14. Given positive integers p, u, and v such that u2 + 2v2 = p , determine, in terms of u and 

v, integers m and n such that 3m2 – 2mn + 3n2 = 24 p . (It is known that if p is any prime 
number congruent to 1 or 3 modulo 8, then we can find integers u and v such that 

u2 + 2v2 = p .) 

Comments: This problem was developed by Dr. Robert Ward, a retired mathematician living in 
Maryland and active in the Ask Dr. Math program. It was inspired by Problem 2 for Grade 8 in the 
1992 Spring Mathematical Competition of Bulgaria, which was called to our attention by the late 
Professor Ljubomir Davidov of Sofia. 

Solution 1 for 2/3/14 by Subrahmanya Krishnamoorthy (10/NY): 

We have u2 + 2v2 = p and 3m2 – 2mn + 3n2 = 24 p . Dividing the latter equation through­
out by three and multiplying the former equation throughout by eight, we have 

2 
m2 – ---mn + n2 = 8 p = 8u2 + 16v2.

3 

Splitting the n2 and rearranging gives 

2 1 8 
m2 – ---mn + ---n2 + ---n2 = 16v2 + 8u2.

3 9 9 
This groups as 

n⎛ n⎞ 2 ⎛ ⎞  2
= ( )2 + 8u2.⎝m ---– + 8 --- 4v

3⎠ ⎝ ⎠3 

Now we can see that the partitioning was wise, because setting the insides of the leftmost squares 
on each side equal and the insides of the rightmost squares on each side equal gives an easy way 
to make both sides equal: 

n n 
m ---– = 4v and --- = u.

3 3 

Thus, n = 3u and m = 4v u. Because both u and v are integers, m and n must also be integers+ 
by additive closure of integers. 
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Solution 2 for 2/3/14 by William Carlson (10/KS): 
First, recognize that p, u, and v are integers that can be positive, and mand n are integers. It is 

also given that u2 + 2v2 = p and 3m2 – 2mn+ 3n2 = 24 p . So 

2 2m2 – ---mn+ n2 = 8 p = 8u2 + 16v .
3 

To go about finding m and n in terms of u and v, I set up a table. For my p values I selected 
several primes congruent to 1 or 3 mod 8. I found u, v, m, and nvalues to go with those p values. 
At first, I didn’t know which of those paired m and n values were m or n, because they are inter­

⁄changeable in m2 – (2 3)mn+ n2 = 8 p , but they are not interchangeable when I was trying to 

( , ( , ( , ( ,find fuchtions f u v) and g u v) such that m = f u v) and n = g u v) . The table given here 
has the m and n values in the proper order for my argument, though I had to switch the order of 
one pair in my original table. 

p 3 11 17 19 41 43 

u 1 3 3 1 3 5 

v 1 1 2 3 4 3 

m 3 9 9 3 9 15 

n 5 7 11 13 19 17 

From this table, it seemed that m = 3u . 

⁄So I put 3u in for m in the equation m2 – (2 3)mn+ n2 = 8u2 + 16v2 to find out what n 
would be. This gave 

23u ⁄( )2 – (2 3)(3u)n + n2 = 8u2 + 16v
29u2 – 2un + n2 = 8u2 + 16v

2u2 – 2un + n2 = 16v

– 4v(n u)2 = ( )2 

–n u = ±4v 

n = u ± 4v 

Setting n = u + 4v made all the m’s and n’s in the table work. Besides, if m = 3u and

⁄n = u + 4v are plugged back into the equation m2 – (2 3)mn+ n2 = 8u2 + 16v2 , the result is 
28u2 + 16v2 = 8u2 + 16v . 

One thing left: m and n have to be integers. If u and v are integers, and m = 3u and 

n = u + 4v , then m and n must also be integers. 

So m = 3u and n = u + 4v . 
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Solution 3 for 2/3/14 by Alexander Yee (9/CA): 

Given 3m2 – 2mn + 3n2 = 24  p and u2 + 2v2 = p . 

First, use the quadratic formula to solve 3m2 – 2mn + 3n2 = 24  (u2 + 2v2 ) for m in terms of 
n, u, and v. 

2n ± (–2n)2 – 4 3( )(3n2 – 24u2 – 48v2 )
m = ---------------------------------------------------------------------------------------------------­

2 3( )  

n ± 2 – 2n2 + 18u2 + 36v2 
= -----------------------------------------------------------------­

3 

In order to get an integer, we must first eliminate all radicals. We need to select a value for n that 

when subsituted into the discriminant, – 2n2 + 18u2 + 36v2 , will give a square of an integer. We 

can do that by setting n to 3u . 

3u (( ) ± 2 – 2  3u)2 + 18u2 + 36v2 
m = ---------------------------------------------------------------------------------­

3 

3u ± 2 36v2 
= ------------------------------­

3 

3u ± 12v = --------------------­
3 

= u ± 4v 

We have found two solutions. There are eight in all. Setting n to –3u also eliminates the radical 

and gives m = – u ± 4v . Notice that the equation 3m2 – 2mn + 3n2 = 24  p is symmetrical in m 
and n. Therefore, we can switch the values of m and n and still have a solution. That gives eight 

,solutions for (m n) : (u + 4v, 3u) , (u – 4v, 3u) , (– u + 4v, –3u) , (– u – 4v, –3u) , 
, ,(3u u  + 4v) , (3u u  – 4v) , (–3u, – u + 4v) , and (–3u, – u – 4v) . 

Solution 4 for 2/3/14 by Mircea (Bobby) Georgescu (9/CA): 

Notation: x y  means that x is a factor of y. 

We are given 3m2 – 2mn + 3n2 = 24  p (equation 1). So 2mn = 3m2 + 3n2 – 24 p = 

3(m2 + n2 – 8 p) . Therefore, 3 2mn . Since 3 is prime and 3 is not a factor of 2, 3 m and/or 3 n . 

Let us consider the case where 3 m (the 3 n case has a similar solution). We set m = 3k for 

some integer k. Substituting m = 3k  in equation 1 gives 27k2 – 6kn + 3n2 = 24  p , which sim­

plifies to 9k2 – 2kn + n2 = 8 p (equation 2). 

– (k2 – 2kn + n2 ) . This is 

8 

Equation 2 is equivalent to k2 – 2kn + n2 = 8( p k2 ) , so 8 

(k n)2 , which means that 4– (k n) . So k n = 4 j  for some integer j.– – 

We substitute n = k – 4 j and equation 2 becomes 8k2 + 16 j2 = 8 p , which is equivalent to

k2 + 2 j2 = p  (equation 3). We know that u2 + 2v2 = p , so setting k = u and j = v  gives a 

solution to equation 3. This gives m = 3u and n = u – 4v as a solution to equation 1. 
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3/3/14. Determine, with proof, the rational number ---- that equals

n 

1 

1 2  2 1+ 
- 1 

2 3  3 2+ 
- 1 

3 4  4 3+ 
- … 1 

4012008 4012009 4012009 4012008+ 
-+ + + + . 

Comment: This problem w as inspired by a similar problem in Matlap, T ransylv ania’s outstand­
ing Hungarian-language mathematics journal for middle school and high school students. 

Solution 1 for 3/3/14 by Eric Stansifer (10/FL): 
All of the terms of the e xpression gi v en were of the form 

I decided to simplify this into an easier -to-manipulate form, so I multiplied the numerator and 
denominator by the conjugate of the denominator: 

1 

a a  1+ a 1+( ) a+ 
-

1 

a a  1+ a 1+( ) a+ 
- a a  1+ a 1+( ) a– 

a a  1+ a 1+( ) a– 
-------------------------------------------------­×= 

a a  1+ a 1+( ) a– 
a2 a 1+( ) a 1+( )2 a( )+ 

-= 

a a  1+ 
a2 a 1+( ) a 1+( )2 a( )+ 

- a 1+( ) a 
a2 a 1+( ) a 1+( )2 a( )+ 

-–= 

a 1+ 
a a  1+( ) a 1+( )2– 

- a 
a2 a a  1+( )– 

-–= 

a 1+ 
a 1+( )– 

- a 
a– 
-–= 

1 

a 
- 1 

a 1+ 
-–= 

1 

a a  1+ a 1+( ) a+ 
-. 

When each term of the gi v en e xpression is modified in the abo v e f ashion, it yields a telescoping 
series which simplifies to a rational form. The modified series is 

1 1 ⎞⎛ ------- – ------- ------- – ------- ------- – -------⎝ 
1

1 

1

2 ⎠
⎞ + ⎝

⎛ 1

2 

1

3 ⎠
⎞ + ⎝

⎛ 1

3 

1 ⎞ + … + ⎛ ------------------------- – -------------------------⎠ .⎠4 ⎝ 4012008 4012009 

Canceling out all b ut the first and last terms yields 

1 1 1 1 2002 
------- – ------------------------- = --- – ------------ = ------------. 

1 4012009 1 2003 2003 

The answer is 2002/2003. 
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Solution 2 for 3/3/14 by Hyun-Soo Kim (10/NJ): 
The sum gi v en in the problem can be written in summation notation as 

1 

n n  n( ) n+ 
-

n 1= 

k 

∑ 
1 + 1 + 

where in this case k = 4012008 . 
Upon calculating the sum for smaller v alues of k, such as 2 and 3, a pattern w as established. 

The pattern is that 
k 

1⎛ --------------------------------------------------- ⎞ = 1 – ----------------.∑ ⎝ n n 1 + +

1 

(n 1 + ) n ⎠ k 1 + n = 1 

We will pro v e by induction that the abo v e conjecture is true. 
Base case: 
k = 1 . 

1 1 2 – 2 1 1⎛ --------------------------------------------------- ⎞ = --------------------------- = ---------------- = ---------------- = 1 – ------- = 1 – ----------------.
∑ ⎝ n n 1 + +

1 

(n 1 + ) n ⎠ 1 2 2 1  + 2 + 2 2 2 k 1 +
n = 1 

Assuming that the induction hypothesis holds for a g i v en v alue k, pro v e that it holds for the v alue 
k 1 + : 
k 1 + k 

1 

n n  n( ) n+ 
-⎝ ⎠ 

⎛ ⎞ 

n 1= 
∑ 1 

n n  n( ) n+ 
-⎝ ⎠ 

⎛ ⎞ 

n 1= 
∑ 1 

k( ) k k( ) k+ 
+= 

1 1 

k 
-– 1 

k( ) k k( ) k+ 
+= 

1 ( )  k( ) k k( ) k+( ) k+ 

k( ) k( ) k k( ) k+( ) 
+= 

1 k( )– k k( ) k– 

k( ) k k k( ) k( )+ 
-+= 

1 ( )  k( ) k k+( ) 
k( ) k( ) k k+( ) 

+= 

1 1 

k 
-–= 

1 1 

k( ) 
-–= 

1 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 

1 + 1 + 2 + 2 + 1 + 

1 – 1 + 2 + 2 + 1 + 1 + 

1 + 1 + 2 + 2 + 1 + 

1 + 1 + 1 + 2 + 

1 + 1 + 2 + 1 + 2 + 

1 – 1 + 1 + 2 + 

2 + 1 + 1 + 2 + 

2 + 

1 + 1 + 

So by induction, our conjecture is true. The rational number that equals the gi v en sum is: 
4012008 

1 

n n  n( ) n+ 
-⎝ ⎠ 

⎛ ⎞ 

n 1= 
∑ 1 1 

4012008 
-– 1 1 

2003 
-– 

2002 
2003 

-.= = = 
1 + 1 + 1 + 
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, ,  , ,  , ,  , ,4/3/14. The vertices of a cube have coordinates (0 0 0) , (0 0 4) , (0 4 0) , (0 4 4) , 
, , , , , ,  , ,(4 0 0) , (4 0 4) , (4 4 0) , and (4 4 4) . A plane cuts the edges of this cube at the points 

, ,  , ,  , ,(0 2 0) , (1 0 0) , (1 4 4) , and two other points. Find the coordinates of the other two 
points. 

Comments: This problem was contributed by Prof. George Berzsenyi, the founder and problem 
editor of the USAMTS. We are thankful for all the ways in which Prof. Berzsenyi supports the 
USAMTS. 

Solution 1 for 4/3/14 by Kevin Lin (10/OH): 

+ +The general equation of the plane is aX bY cZ = d . 

, , , ,  , ,Put in the three points on the plane: (0 2 0) , (1 0 0) , and (1 4 4) : 
( )  0 b ( )  + ( )  0a ( )  + ( )  2 c ( )  = d 

( )  1 b ( )  + ( )  0a ( )  + ( )  0 c ( )  = d 

( )  1 b ( )  + ( )  4a ( )  + ( )  4 c ( )  = d 

Solve for a, b, and cin terms of d. We have 
d d 

= ,a d b = ---, c = –---.
2 2 

Setting d = 2 , the equation of the plane is 

+ –2X Y Z = 2. 

The cube has 12 edges, each defined by a pair of constraints: 
Edge 1 X = 0 &  Y = 0 

Edge 2 X = 0 &  Y = 4 

, ,Edge 3 X = 0 &  Z = 0 The plane cuts this edge at known point (0 2 0) 
Edge 4 X = 0 &  Z = 4 

Edge 5 X = 4 &  Y = 0 

Edge 6 X = 4 &  Y = 4 

Edge 7 X = 4 &  Z = 0 

Edge 8 X = 4 &  Z = 4 

, ,Edge 9 Y = 0 &  Z = 0 The plane cuts this edge at known point (1 0 0) 
Edge 10 Y = 0 &  Z = 4 

Edge 11 Y = 4 &  Z = 0 The plane cuts this edge at known point (1 4 4), ,  
Edge 12 Y = 4 &  Z = 4 

If an edge of the cube is cut by the plane, every coordinate of the intersection point has to be 
between 0 and 4, inclusive, or that point is not on the cube. Checking the intersection points of the 
nine edges without known points, we find that the plane cuts edge 2 at (0 4 2) and cuts edge 10, ,  
at (3 0 4) ., ,  
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Solution 2 for 4/3/14 by Karl Jiang (12/FL): 
To the left is a figure of the cube suggested. The 

three known intersection points of the plane and the 

x

z

B (0,2,0) 
D

E 

F 

1 

4

2 

4 

G 1 C (1,4,4) edges are A, B, and C, shown labeled with their 
y coordinates. If two intersection points share a face 

of the cube, the line segment drawn between them 
is the intersection of the plane and that face. We 
can see that for faces opposite each other on the 
cube, the slopes of those plane-face intersection 
segments are going to be the same. In this way, we 
can use the proportions of those slopes to get the 
remaining two plane-edge intersection segments.

      Line segment AB is the intersection of the 
plane and a face. Naming the vertex with coordi­

, ,nates (0 0 0) as H, we see that BH = 2	 and 

H A (1,0,0)	 AH = 1 . The opposite face must contain a right 
triangle CDF similar to triangle BAH, with point F 
directly below point C at coordinates (1 0 0) and, ,  

/with line segment CD  being the intersection of the plane and the face. CF = 4 and DF CF = 

AH BH = 1/2, so DF = 2 and we can conclude that D = (3 0 4) ./	 , ,  

Line segment AD  is the intersection of the plane and a face. We see that AF = 4 and 

DF = 2 . The opposite face must contain a right triangle CEG similar to triangle DAF, with 

, ,point G at the vertex (0 4 4)  and with line segment CE being the intersection of the plane and 

/ /the face. CG = 1 and EG CG = AF DF = 2, so EG = 2 and we can conclude that 

E = (0 4 2) ., , 

, ,  , , 
Answer: The two other intersection points are (3 0 4) and (0 4 2) . 
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5/3/14. A fudgeflake is a planar fractal figure with 120˚ rota-
tional symmetry such that three identical fudgeflakes in the
same orientation fit together without gaps to form a larger
fudgeflake with its orientation 30˚ clockwise of the smaller
fudgeflakes’ orientation, as shown on the right. If the distance
between the centers of the original three fudgeflakes is 1,
what is the area of one of those three fudgeflakes? Justify
your answer.

Comments: This problem was written by Dr. Erin Schram, the
solutions editor of the USAMTS. The fudgeflake came from The
Fractal Geometry of Nature by Benoit Mandelbrot, who credits
a 1970 paper by Davis and Knuth in the Journal of Recreational Mathematics.

Solution 1 for 5/3/14 by Guy David (9/FL):

1

We can first connect the centers of the three fudgeflakes,
creating an equilateral triangle with side length 1. We note the
region that the triangle cuts out from one fudgeflake, which is
shaded in red in the diagram to the left.

As the fudgeflakes have 120˚
rotational symmetry, three copies of
this region occur in the fudgeflake.

We can put a fourth fudgeflake above the others. It fits the one to its lower left just like the
other two fudgeflakes fit together, so their centers are 1 apart. Likewise the centers of that fudge-
flake and the fudgeflake to its lower right are 1 apart. This gives us a different equilateral triangle
that cuts out a different region, shaded in blue.

This blue region can be found in three places within the
fudgeflake. Three copies of the red region and three copies of the
blue region combine to form a full fudgeflake. The sum of the
areas of all three red pieces is equal to the area of the equilateral
triangle with side 1, and the sum of the areas of all three blue
pieces is the same. Therefore, the area of one fudgeflake is twice

the area of an equilateral triangle with side 1: .2
3

4
-------× 3

2
-------=

= +
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Solution 2 for 5/3/14 by Boris Hanin (10/ID):
Observe that we can completely tesselate any part of the plane using the fractal. Also, by con-

necting the centers of adjacent fractals, we get a grid made of equilateral triangles with side 1.
Consider the sequence of nested rhombuses shown below.

An  rhombus is contained in  fractals and contains  fractals. This means

that  fractals arranged in a rhombus pattern contain an  rhombus and are con-

tained in an  rhombus. If we take those two rhombuses, their areas give us an

upper bound and a lower bound for the area of the  fractals.

The area of a rhombus with side a is  where  is the angle between two adjacent
sides. Observing that the grid of equilateral triangles between the centers of the fractals gives

, the area of a rhombus with side a is . Denoting the area of a fractal as A, we get

Equivalently,

Observe that , so letting  and applying the

squeeze theorem, we get .

n n× n 1+( )2 n 1–( )2

n2 n 1–( ) n 1–( )×
n 1+( ) n 1+( )×

n2

a2 αsin α

α 60°=
a2 3

2
-------------

n 1–( )2 3
2

-------------------------- n2A
n 1+( )2 3

2
---------------------------.< <

n 1–( )2 3
2n2

-------------------------- A
n 1+( )2 3

2n2
---------------------------.< <

n 1–( )2 3
2n2

--------------------------
n ∞→
lim n 1+( )2 3

2n2
---------------------------

n ∞→
lim 3

2
-------= = n ∞→

A
3

2
-------=
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Comment from the solutions editor: One rare type of solution, such as the one below, requires 
finding a reference that describes the construction of a fudgeflake, such as Mandelbrot’s The 
Fractal Geometry of Nature. Outside references like this are perfectly acceptable, though a solu­
tion should always cite any special references used. 

Solution 3 for 5/3/14 by Jason Allen (12/MN): 
The fudgeflake is constructed as follows. You begin with a regular hexa­

gon like the one pictured at right. Then for each of the six sides, you replace 
the side with the motif at right, alternating directions so that the motif bends 
in at one side, out at the adjacent side, in again for the third side, out again for 
the fourth side, and so on. The motif has a 120˚ angle and its missing base is 
as long as a side of the hexagon. Repeat this again and again with the result- Regular Hexagon 
ing figure, scaling the motif smaller at each iteration, and always starting 
with the same vertex and with the same direction at each iteration. Three iter-

Motif
ations are shown below. 

Start 
point 

Iteration 1 Iteration 2 Iteration 3 

In every iteration, we are adding a certain number of motif triangles to the figure and we are 
subtracting the same number of triangles with the same area from the figure, so the area in each 
successive iteration remains constant. Note that the center does not move between iterations. 

If we transform two identical hexagons that share a side into fudgeflakes, if we coordinate 
their motif patterns, the resulting fudgeflakes fit together the same way that the fudgeflakes in this 
problem fit together. Since the fudgeflakes have the same area as the initial hexagons, we just need 
to find the area of those hexagons. 

A B 

A B 
1/2 1/2 

1 

D 

C 

E 

Label the centers of the fudgeflakes as A and B. We are given 
that AB = 1 and we deduced that A and B are the centers of 
congruent regular hexagons that share a side and have the same 
area as the fudgeflakes. Congruent hexagons have congruent 

apothems, so AD = BD = 1 2  and line segment AD is per­⁄ 

perpendicular to side CE . Triangle ACE is equilateral, since the 

hexagon is regular, so m∠ACD = 60° . Triangle ACD is a 

30-60-90 triangle, so CD = 3 6⁄ . The area of triangle ACD is 

(1 2) × ( 3 6) × (1 2) = 3 24  . The hexagon centered at ⁄ ⁄ ⁄ ⁄ 
point A is made up of 12 triangles congruent to triangle ACD, so  

the area of the hexagon is 3 2⁄ . Therefore, the area of one of 

the fudgeflakes is 
3- .

2 
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