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1/1/14. Some unit cubes are stacked atop a flat 4 by 4 square. The South View East View 
figures show views of the stacks from two different sides. Find 
the maximum and minimum number of cubes that could be in the 
stacks. Also give top views of a maximum arrangement and a 
minimum arrangement with each stack marked with its height. 

Comment: This problem was inspired by Problem 1097 in Sándor Róka’s excellent collection of 
2000 problems in elementary mathematics. 

Solution 1 for 1/1/14 by Ameya Velingker (9/PA): 
First, assign a coordinate system to the unit squares inside the 4 by 4


ith
square as shown in figure 1.1. Let (i j) denote the square that is in the , 
jth (row and column. Also let S i, j) denote the height of the stack on square 

(i j) ., 
Let us first find the maximal arrangement of cubes that will give the 

appropriate views. From looking at the south view, we can deduce that Figure 1.1 

S k, 1) ≤ 4 for 1 ≤ ≤  4 

(1,1)(1,2)(1,3)(1,4) 

(2,1)(2,2)(2,3)(2,4) 

(3,1)(3,2)(3,3)(3,4) 

(4,1)(4,2)(4,3)(4,4) 

( k


S k, 2) ≤ 1 for 1 ≤ ≤  4
( k


S k, 3) ≤ 4 for 1 ≤ ≤  4
( k


S k, 4) ≤ 2 for 1 ≤ ≤k 4
( 
By looking at the east view, we can also deduce that 

S(1, k) ≤ 3 for 1 ≤ ≤k 4 

S(2, k) ≤ 4 for 1 ≤ ≤k 4 

S(3, k) ≤ 2 for 1 ≤ ≤k 4 

S(4, k) ≤ 4 for 1 ≤ ≤  4k 

, (For each square (i j) , we can choose the largest value for S i, j) that satis
fies the above inequalities. This gives us the maximal arrangement with top 
view shown in figure 1.2. Each square in the figure contains the height of the 
stack on top of it. The total number of cubes used in this maximal configura
tion is 38. 

Now let us find a minimal arrangement. Looking at the east view, we have 

4 4 2

2 2 2

4 4 2
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Figure 1.2 

, , , ,max(S(1 1), S(1 2), S(1 3), S(1 4)) = 3 

, , , ,max(S(2 1), S(2 2), S(2 3), S(2 4)) = 4 

, , , ,max(S(3 1), S(3 2), S(3 3), S(3 4)) = 2 

, , , ,max(S(4 1), S(4 2), S(4 3), S(4 4)) = 4 

So, the number of cubes needed is at least 13. However, looking at the stack of height 1 in the 



south view, there is at least one value of k such that S k, 2) = 1 . Therefore, at least 14 cubes are ( 
needed. Figure 1.3 shows the top view of a working configuration using 14 cubes. Hence, this is a 
minimal configuration. 
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Figure 1.3 

Solution 2 for 1/1/14 by James Albrecht (11/IL): 
To prove the mximum and minimum for the number of blocks, first I will establish bounds and 

then I will find configurations that exist at the bounds. 
Minimum: 14 

According to the stacks seen from the east and the south, for the minimum 
4 

we need at least:

2 one stack of height 1,


4 one stack of height 2,

one stack of height 3, and

3 
two stacks of height 4. 

4 1 4 2  
So min  ≥ 1 2 3 4 4 = 14 .+ + + +  

There is a configuration with 14 cubes, so that is the minimum. 

4 1 0 0

0 0 0 2

0 0 4 0

0 0 3 0

Maximum: 38 

4 1 4 2 


For the maximum, the south view lets us have 4’s down the first column, 1’s 
4 

down the second column, 4’s down the third column, and 2’s down the fourth 
2 column. 

4 But the east view limits the rows. In row 2 each entry must be no higher than 
2. In row 4 each entry is no higher than 3. This leaves a configuration with 38 

3 
cubes. 

4 1 4 2 

2 1 2 2 

4 1 4 2 

3 1 3 2 



, ,2/1/13. Find four distinct positive integers, a b c , and d , such that each of the four sums 

a b c , a b d , a c d , and b c d is the square of an integer. Show that + + + + + +  + + 


infinitely many quadruples (a b c d) with this property can be created.
, , ,  

Comment: This problem is based on Problem 5 of the 1993-94 Scottish Mathematical Challenge. 
The interested reader is directed to Mathematical Challenges II, published by the Scottish Mathe
matical Council in 1995. 

Solution 1 for 2/1/14 by Matthew Walsh (12/NY): 
One quadruple satisfying the conditions is (9, 198, 269, 522). 

If we let a = 3x2 – 18 x – 39 , b = 3x2 6 + , c = 3 x2 + 18 x + 33 , and d = 3 x2 + 36x + 42 
where x is some integer greater than 7 (so that a, b, c, and d are all positive), all of the four sums 
given in the problem will be perfect squares. 

+ +  3 xa b c = (3 x2 – 18 x – 39  ) + (3 x2 6 + ) + (3 x2 + 18 x + 33) = 9 x2 = ( )2 

+ +  2a b d = (3 x2 – 18 x – 39  ) + (3 x2 6 + ) + (3 x2 + 36 x + 42) = 9 x2 + 18 x + 9 = (3x 3 + )
+ +a c d = (3x2 – 18 x – 39  ) + (3 x2 + 18 x + 33) + (3 x2 + 36 x + 42) = 9 x2 + 36 x + 36 = (3 x 6 + )
+ +  2b c d = (3x2 6 + ) + (3 x2 + 18 x + 33) + (3 x2 + 36 x + 42) = 9 x2 + 54 x + 81 = (3 x 9 + )

Because an infinite number of values for x exists, there also exists an infinite number of quadru
ples (a b c d) such that each of the four sums a b c , a b d , a c d , and b c d, , ,  + + + + + +  + +  
is a perfect square. 

Solution 2 for 2/1/14 by Rohit Dewan (9/MD): 

Let w, x, y, and z be the squares a b c , a b d , a c d , and b c d . So+ + + + + +  + +  

1 1 1 0  

1 1 0 1  

1 0 1 1  

0 1 1 1  

a 

b 

c 

d 

w 

x 

y 

z 

= 

⁄ ⁄ ⁄ ⁄1 1 1 0  1 3 1 3 1 3 –2 3

⁄ ⁄ ⁄Using a calculator, I found the inverse of 1 1 0 1  to be 1 3 1 3 2 –  ⁄ 3 1 3 . Therefore, 
⁄ ⁄ ⁄1 0 1 1  1 3 –2 3 1 ⁄ 3 1 3

0 1 1 1  –2 3 1 ⁄ 3 1 3 1 3⁄ ⁄ ⁄ 

⁄ ⁄ ⁄ ⁄a 1 3 1 3 1 3 –2 3 w 

⁄ ⁄ ⁄b 1 3 1 3 2 –  ⁄ 3 1 3 x= 
⁄ ⁄ ⁄c 1 3 –2 3 1 ⁄ 3 1 3 y 

d –2 3 1 ⁄ 3 1 3 1 3 z⁄ ⁄ ⁄ 

2 



which means 
⁄ ⁄ ⁄ ⁄a = (1 3)w + (1 3) x + (1 3)y – (2 3)z 

⁄ ⁄ ⁄b = (1 3)w + (1 3) x – (2 3)y + (1 ⁄ 3)z 

⁄ ⁄ ⁄c = (1 3)w – (2 3) x + (1 ⁄ 3)y + (1 3)z 

⁄ ⁄ ⁄ ⁄d = –(2 3)w + (1 3)x + (1 3)y + (1 3)z 

If w, x, y, and z are divisible by 3, then a, b, c, and d would be integers. I used 482 as w, 512 as x, 

542 as y, and 572 as z. 482 = 2304 , 512 = 2601 , 542 = 2916 , and  572 = 3249 . 

⁄ ⁄ ⁄441 = (1 ⁄ 3)(2304) + (1 3)(2601) + (1 3)(2916) – (2 3)(3249) 
⁄ ⁄774 = (1 ⁄ 3)(2304) + (1 3)(2601) – (2 3)(2916) + (1 ⁄ 3)(3249) 
⁄ ⁄1089 = (1 ⁄ 3)(2304) – (2 3)(2601) + (1 ⁄ 3)(2916) + (1 3)(3249) 

⁄ ⁄ ⁄1386 = –(2 ⁄ 3)(2304) + (1 3)(2601) + (1 3)(2916) + (1 3)(3249) 

So (441, 774, 1089, 1386) is a working example. 
If I were to multiply the 2304, 2601, 2916, and 3249 by any square, the new a, b, c, and d 

would be four different distinct positive integers. Therefore, infinitely many quadruples
(a b c d) can be created., , ,  

Comment from the solutions editor: Rohit Dewan’s method for creating an infinite number of 
quadruples is simple, but the equations that are deduced are very powerful for creating quadru
ples. With a little rearrangement, we get 

w x y+ + +  z 
a = ------------------------------- – z

3 

w x y + z+ +
b = ------------------------------- – y

3 

w x y+ + +  z 
c = ------------------------------- – x

3 

w x y+ + +  z
d = ------------------------------- – w

3 

So in order for a, b, c, and d to be integers, we need only have the sum of the squares, 
+ +w x y + z divisible by 3 rather than having each individual square divisible by 3. With two 

more requirements that the squares w, x, y, and z be distinct, so that a, b, c, and d will be distinct, 
and that the largest of the squares be smaller than half the sum of the other three squares, so that 
the smallest of a, b, c, and d will be positive, these equations can generate all possible quadruples 
(a b c d) ., , ,  

By using 82 as w, 92 as x, 102 as y, and 112 as z (note that 64 + 81 + 100 + 121 = 3 × 122 ), 

we get the smallest quadruple (1 22 41 58  ) ., , , 



3/1/13. For a set of points in a plane, we construct the perpendicular bisectors of the line 
segments connecting every pair of those points and we count the number of points in which 
these perpendicular bisectors intersect each other. If we start with twelve points, the maximum 
possible number of intersection points is 1705. What is the maximum possible number of 
intersection points if we start with thirteen points? 

Comment: This problem was found in an unpublished manuscript by János Pataki, a noted 
Hungarian mathematician. 

We wish to apologize for a flaw in the statement of the problem. As Agustya 
Mehta’s solution mentions below, it is possible to have an infinite number of points 
of intersection between the perpendicular bisectors, starting with as few as four 
points, if two line segments sharing the same perpendicular bisector are viewed as 
generating two superimposed perpendicular bisectors. We said that starting with 
twelve points gave 1705 intersections, so we felt that we had implicitly eliminated 
infinite intersections as a solution. However, we should have explicitly eliminated the 
infinite case by asking for the intersections of distinct perpendicular bisectors, as the editted prob
lem below does. We simply had not noticed that the infinite case was possible in our translation 
from the problem’s original Hungarian wording. 

3/1/14. (editted) For a set of points in a plane, we construct the perpendicular bisectors of the 
line segments connecting every pair of those points. We count the number of points in which 
distinct perpendicular bisectors constructed this way intersect each other. If we start with 
twelve points, the maximum possible number of intersection points is 1705. What is the max
imum possible number of intersection points if we start with thirteen points? 

Solution 1 for 3/1/14 by Agustya Mehta (11/OH): 
We assume that no two bisectors are common to each other, as this would result in infinite 

points of intersection. 

x x x 1 – )(If we start with x points, we will have ⎛ ⎞  = ------------------- connecting lines, and thus also⎝ ⎠  22

(x x 1 – )------------------- perpendicular bisectors.
2 
If we have n oblique lines with no restrictions on their placement, the mximum number of 

n n n 1 – )(points of intersection that they create is ⎛ ⎞  = -------------------- .⎝ ⎠  2 
In our case, any three of the starting points form a triangle, and thus their perpendicular bisec

tors will all intersect at a single point. This means that, for every set of three starting points, we 
3 

2

will have a single point of intersection instead of the three given by ⎛ ⎞  .⎝ ⎠2

xThus, we must subtract 2⎛ ⎞  from the total possible number of points of intersection given by ⎝ ⎠ 

( (


3

n n 1 – ) x x 1 – )the formula -------------------- where n = ------------------- to correct the count.
2 2 

Therefore, the maximum number of points of intersection for the perpendicular bisectors of 



(the ( x x  1– )) ⁄ 2 lines is 

( (⎛ x x  1– )⎞ ⎛ x x  1– )-------------------⎠ ⎝ ------------------- 1– ⎞
( (⎝ 2 2 ⎠ x x x  1– )( x2 – x 2– ) x x  1– )( x 2– )⎞------------------------------------------------------------ – 2⎛ ⎞  = ------------------------------------------------ 2⎛ -----------------------------------– 

2 ⎝ ⎠  2 2 2 ⎝ 3 2 1 ⎠3 ⋅ ⋅  ⋅ ⋅  

( (x x  1– )( x 2– )( x 1+ ) x x  1– )( x 2– )= ------------------------------------------------------ – -----------------------------------
8 3 

( x 1+ 1⎞= x x  1– )( x 2– )⎛
⎝ ------------ ---– 

8 3⎠ 

(x x  1– )( x 2– )(3 x 5– )= --------------------------------------------------------
24 

x x  1– )( x 2– )(3 x 5– ) 12 11 ( )  31( ( )  10 ( )So, when x = 12 , --------------------------------------------------------- = --------------------------------------- = 1705
24 24 

x x  1– )( x 2– )(3 x 5– ) 13 12 ( )  34( ( )  11 ( )and when x = 13 , --------------------------------------------------------- = --------------------------------------- = 2431 .
24 24 

Solution 2 for 3/1/14 by Joel Lewis (12/NY): 
We will approach the problem generally, for n points in the plane. 
Any three points determine three segments, and thus three perpendicular bisectors. The three 

perpendicular bisectors are concurrent at the circumcenter of the triangle determined by the three 
points. So for every three points, we have one intersection. Thus, for n points in the plane, there 

(are C n, 3) points of intersection of this type. 
Also, if you take two separate pairs of points that are not in some special position, the perpen

(dicular bisectors of their segments must intersect in a point. There are C n, 2) ways to pick the 

(first pair of points and C n  2– , 2) ways to pick the second pair. Order doesn’t matter, so we have

C n, 2) × C n  2– , 2) ⁄ 2 total points of intersection of this type.( (

( ( (
So in general, we have a maximum of C n, 3) + C n, 2) × C n  2– , 2) ⁄ 2 points of intersec

tion. For n = 12 this gives us 220 + 66 × 45 ⁄ 2 = 220 1485+ = 1705 , and for n = 13 , this 

gives 286 + 78 × 55 ⁄ 2 = 286 2145+ = 2431 . 

Solution 3 for 3/1/14 by Mitka (Dmitry) Vaintrob (8/OR): 

The answer is C C(13 2), 2) – 2C(13 3) = 2431 . In general, if there are n points, there are( , ,

( ( (
at most C C n, 2), 2) – 2C n, 3) intersection points. This is because for every pair of points, P 

and Q , there is one bisector BP Q and each two bisectors intersect in at most one point. So the , 

( (total number of pairs of bisectors C k, 2) , where k is the number of bisectors C n, 2) , is an 
upper bound on the number of intersection points. 

For every three points, P Q , and R , the three bisectors , , , and BQ R are either ,, BP Q BP R , 

,parallel (this happens when P Q , and R are collinear) or concurrent, intersecting at the circum-

P Q, BP R} , {BP Q, B } ,center of triangle PQR . So for the three pairs of bisectors {B , , , Q R, 

{B , , BQ R} , we get at most one intersection point, So we have to subtract at least two pairs ofP R , 



( ( (bisectors for each triple of points. This gives an upper bound of C C n, 2), 2) – 2C n, 3) for the 
maximum number of intersection points. 

Let us now show that this number of intersections can indeed be achieved. 
We will show by induction on n that there exist n points in the plane such that any two distinct 

bisectors of pairs of those points intersect and the only time three bisectors are concurrent is when 
, ,they are of the form BP Q , B , BQ R for any three points P Q R , and no four or more bisec,, P R , 

tors are concurrent. 
Let us suppose the hypothesis is true for n 1 – points and , , …, are a configuraP1 P2 Pn 1 – 

tion of points for which this is true. We will show that it is possible to add another point Pn so that 

the formula for number of intersections still hold for n points. 

Notice that BP Q is parallel to BR S only if PQ is parallel to RS , so if PiP is not parallel to , , n 

for any 1 ≤ i, ,  <P jPk j k < n with j k then the bisectors BPi, P and BP j, P will intersect. So if 
n k 

does not lie on a certain collection of lines through the points , then all the bisectors will Pn Pi 

intersect. 
Also notice that for a point O , the bisector , passes through O only if the distance OPBP Q

equals the distance OQ . So given any point O where two or more existing bisectors intersect, the 

bisector BPi, P will not pass throught O if OPn does not equal OP for 1 ≤ i n . So if P does<i nn 

not lie on a certain collection of circles whose centers are the points of intersection for the config
uration of n 1 – points, then no new perpendicular bisector will be concurrent with two or more 
existing perpendicular bisectors. 

There is just one more type of concurrence that we didn’t consider: a concurrence with two or 
more new bisectors involving Pn , such as a concurrence between BPi, P , BP j, P , and BPk, P , for 

n n l 

1 ≤ i j k l  < n with i j and k l . In the example here, we must notice that the point of inter, , ,  < < 
section of BPi, P and BP j, P is also on the old bisector BPi, P since Pi , P j , and Pn form a trian

n n j 

i j ,gle. So if , {  } ≠ {k l} , both BPi, P j 
and BPk, P would pass through that point, so we would have 

l 

the concurrence at the intersection of two old bisectors, which brings this example into a previous 
case. The only other example possible would be when BPi, P , BP j, P , and BPk, P concur, but that 

n n n 

intersection point is also on BPi, P j
, BPi, P , and BP j, P , which is again that previous case. 

k k 

So, as long as Pn is not is not on a certain finite set of circles nor on a certain finite set of 

lines, the points P1 , P2 , …, P , P  satisfy all the conditions.n 1 – n 

Our induction hypothesis is true when n = 3 , for when we have three points P1 , P2 , and P3 

not all on one line, the three bisectors intersect at the circumcenter of the triangle P1P2P and3 

C C(3 2), 2) – 2C(3 3) = C(3 2) – 2C(3 3) = 3 – 2 ⋅ 1 = 1 .( , , , , 
Therefore, the number of intersections of bisectors for the collection of points we constructed 

( ( (is equal to C C n, 2), 2) – 2C n, 3) . Which shows that our upper bound is indeed the maximum 

number. When n = 13 , this gives the answer C C(13 2 ), 2) – 2C(13 3 ) = 2431 .( , , 



4/1/13. A transposition of a vector is created by switching exactly two entries of the vector. For 
, , , , , ,  , , , , , ,example, (1 5 3 4 2 6 7) is a transposition of (1 2 3 4 5 6 7) . Find the vector X if 

, , , , , ,  , , , , , ,  , , , , , ,S = (0 0 1 1 0 1 1) , T = (0 0 1 1 1 1 0) , U = (1 0 1 0 1 1 0) , and

V = (1 1 0 1 0 1 0) are all transpositions of X. Describe your method for finding X., , , , , ,  

Comment: This problem was created by Drs. Gene Berg and George Berzsenyi on the basis of an 
article by Vladimer I. Levenshtein, published in the January 2001 issue of the IEEE Transactions 
on Information Theory. 

Solution 1 for 4/1/13 by Brian Ho (12/IL): 
To find the vector X, we want to look for a vector as similar to S, T, U, and V as possible, since 

vector transposition does not change the vector very much. 

, , , , , ,S = (0 0 1 1 0 1 1) 
, , , , , ,T = (0 0 1 1 1 1 0) 
, , , , , ,U = (1 0 1 0 1 1 0) 
, , , , , ,V = (1 1 0 1 0 1 0) 

We can notice that positions 2 and 7 have three of the four vectors as 0. Positions 3, 4, and 6 
have three or four vectors as 1. Based on the above reasoning, we can say that 
X = (? 0 1 1 ? 1 0) ., , , , , ,  

If we compare this X with vector V, we notice that the entries at positions 2 and 3 are switched. 
The unknown entries of X must thus be the same as the corresponding entries in V, because only 

, , , , , ,two entries are switched in a transposition. Thus X = (1 0 1 1 0 1 0) . 
We can verify that this is a viable vector X by testing that it is a transposition of S, T, and U as 

well as of V. Switching positions 1 and 7 in X results in S, switching positions 1 and 5 in X results 
in T, switching positions 4 and 5 results in U, and switching positions 2 and 3 results in V. We  
have, therefore, found X. 

Comment from the solutions editor: Brian Ho’s nice solution uses a method mathematicians 
call majority vote. It could be improved by determining when majority vote would yield correct 
information about X. As it is, Mr. Ho had to verify his answer at the end to be rigorous. 

, , , , , ,If the writer of the problem had added a fifth transposition W = (0 1 1 1 0 1 0) to the 

other four transpositions, majority vote would have given (0 0 1 1 0 1 0) as the result, which , , , , , ,  
is not X and has too many zeros. Common sense tells us that given too many zeros, the 3-to-2 
votes for 0 are the suspect entries, so the result converts to (? 0 1 1 ? 1 0) , which we can han, , , , , ,  
dle as Mr. Ho did. But it is wise to support common sense with rigorous mathematics. 

As Mr. Ho argued, a transposition is not changed from X by much: it differs in two entries (we 
will ignore switching two identical entries, since that would yield X itself and testing shows that 
neither S, T, U, nor V is X). So the four transpositions combined differ from X at exactly eight 
entries. The two columns at positions 1 and 5 must use up four of those different entries, two in 
each column. That leaves four other different entries. We have four columns with a 3-to-1 vote, so 
the minority values in those column must be the four other entries that don’t match X. Thus, we 

, , , , , ,have proven Mr. Ho’s claim that X = (? 0 1 1 ? 1 0) . 



Solution 2 for 4/1/14 by Yuyin Chen (11/MI): 
I will list every transposition of S, T, U, and V.


S T U V


, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,(0 0 0 1 1 1 1) (0 0 0 1 1 1 1) (0 0 1 0 1 1 1) (0 1 0 1 0 1 1) 
, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,(0 0 1 0 1 1 1) (0 0 1 0 1 1 1) T = (0 0 1 1 1 1 0) (0 1 0 1 1 1 0) 
, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,S = (0 0 1 1 0 1 1) S = (0 0 1 1 0 1 1) (0 1 1 0 1 1 0) (0 1 1 1 0 1 0) 
, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,(0 0 1 1 1 0 1) (0 0 1 1 1 0 1) (1 0 0 0 1 1 1) (1 0 0 1 0 1 1) 
, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,T = (0 0 1 1 1 1 0) T (= 0 0 1 1 1 1 0) (1 0 0 1 1 1 0) (1 0 0 1 1 1 0) 
, , , , , ,  , , , , , ,  , , , , , ,(0 1 0 1 0 1 1) (0 1 0 1 1 1 0) (1 0 1 0 0 1 1) (1 0 1 1 0 1 0), , , , , ,  
, , , , , ,  , , , , , ,  , , , , , ,(0 1 1 0 0 1 1) (0 1 1 0 1 1 0) (1 0 1 0 1 0 1) (1 1 0 0 0 1 1), , , , , ,  
, , , , , ,  , , , , , ,  , , , , , ,(0 1 1 1 0 0 1) (0 1 1 1 0 1 0) U = (1 0 1 0 1 1 0) (1 1 0 0 1 1 0), , , , , ,  
, , , , , ,  , , , , , ,  , , , , , ,(0 1 1 1 0 1 0) (0 1 1 1 1 0 0) (1 0 1 1 0 1 0) (1 1 0 1 0 0 1), , , , , ,  
, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,(1 0 0 1 0 1 1) (1 0 0 1 1 1 0) (1 0 1 1 1 0 0) V = (1 1 0 1 0 1 0) 
, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,(1 0 1 0 0 1 1) U = (1 0 1 0 1 1 0) (1 1 0 0 1 1 0) (1 1 0 1 1 0 0) 
, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,(1 0 1 1 0 0 1) (1 0 1 1 0 1 0) (1 1 1 0 0 1 0) (1 1 1 0 0 1 0) 
, , , , , ,(1 0 1 1 0 1 0) (1 0 1 1 1 0 0) (1 1 1 0 1 0 0) (1 1 1 1 0 0 0), , , , , ,  , , , , , ,  , , , , , ,  

Now I will systematically search for any vector that is in all four lists. If a vector is in the S list 
and not in the T list, I do not have to search for it in the U list, and if a vector is in the S and T lists 
and not in the U list, I do not have to search for it in the V list. So 13 vectors in the S list reduce to 
7 vectors in the T list, then to 3 vectors in the U list, and then to 1 vector in the V list, which is 
(1 0 1 1 0 1 0) . It is a transposition of all four vectors; therefore, all four vectors are transpo, , , , , , 


, , , , , , 
sitions of it. So our solution is X = (1 0 1 1 0 1 0) . 

Comment from the solutions editor: I sorted Yuyin Chen’s lists into lexicographical order, 
because such an ordering makes comparisons between lists easier. 

Solution 3 to 4/1/14 by Michael Chmutov (12/OM): 
Suppose the first entry of X is 0. Then in the vectors U and V it was changed by the transposi

tion. In the vector U that 0 would have been switched with either the second, fourth, or seventh 
, , , , , ,  , , , , , ,  , , , , , ,entry, which would make X either (0 1 1 0 1 1 0) , (0 0 1 1 1 1 0) , or (0 0 1 0 1 1 1) . 

But V is not a transposition of any of these. Consequently, the first entry of X is 1. 
In the vector S that first entry of X was switched with either the third, fourth, sixth, or seventh 

, , , , , ,  , , , , , ,  , , , , , ,entry, which makes X either (1 0 0 1 0 1 1) , (1 0 1 0 0 1 1) , (1 0 1 1 0 0 1) , or 

, , , , , ,  , , , , , ,(1 0 1 1 0 1 0) . The only one of these for which T is a transposition is (1 0 1 1 0 1 0) . 
Checking it against U and V,  they also turn out to be transpositions of it. 

, , , , , ,Answer: X = (1 0 1 1 0 1 0) . 



Solution 4 for 4/1/14 by Michael Lieberman (12/PA): 
First I will note that if two transpositions of X are different in four places, then two of those 

places must have been transposed in one and the other two in the other. Therefore, the remaining 
three places must all be the same as the original vector X. For example, U and V are different in 
positions 2, 3, 4, and 5, so their entries at positions 1, 6, and 7 must be the entries in X. 

, , , , , ,U = (1 0 1 0 1 1 0) 
, , , , , ,V = (1 1 0 1 0 1 0) 

?  ? ? ? 1 0  )X = (1, , , , , ,  

Similarly, by comparing S with U and S with V the rest of X can be determined. 

S = 0 0 1 1 0 1 1, , , , , ,( ) S = 0 0 1 1 0 1 1, , , , , ,( ) 
U = 1 0 1 0 1 1 0, , , , , ,( ) V = 1 1 0 1 0 1 0, , , , , ,( ) 
X = ? 0 1 ? ? 1 ?, , ,  ,  ,  ,( ) X = ? ? ? 1 0 1 ?,  ,  , , , ,( ) 

(1 ? ? ? ? 1 0), , , , , ,  
(? 0 1 ? ? 1 ?), , , , , ,  
(? ? ? 1 0 1 ?), , , , , ,  

, , , , , ,X = (1 0 1 1 0 1 0) 
Note that vector T is not even needed, but it can be used to check the correct answer. The fol

lowing diagram shows which entries were switched. 

, , , , , ,X = (1 0 1 1 0 1 0) 
, , , , , ,S = (0 0 1 1 0 1 1) 

T = (0 0 1 1 1 1 0), , , , , ,  
U = (1 0 1 0 1 1 0), , , , , ,  
V = (1 1 0 1 0 1 0), , , , , ,  

Solution 5 for 4/1/14 by Brandon Levin (12/OH): 

Let X = ( x1, , , , , ,  x7 ) . Observe that X must contain four 1’s and three 0’s since 

S, T, U,  and V do. Also note that none of S, T, U, and V can be X. 
Now the dot product X X is 4, since there are four 1’s. (A dot product of two vectors is the 

x2 x3 x4 x5 x6 

• 
sum of all the pairwise products of entries in the same positions.) However, when one of the 1’s is 
switched with a 0 to make a transposition, the dot product of X and the transposition will be less 
by 1, in other words, the dot product will be 3. 

Therefore, the dot product of X with any of the transpositions S, T, U, and V will be 3. Also the 
dot product of known vector, such as S, with X will be the sum of the entries in X : the variables 
x1 , x2 , x3 , x4 , x5 , x6 , and x7 . So, each dot product of X with the transpositions S, T, U, and V 

will create an equation in the variables  x1 , x2 , x3 , x4 , x5 , x6 , and  x7 . 



Therefore, 

•X S = x3 + x4 + x6 + x = 37 

X T = x3 + x4 + x5 + x6 = 3• 

X U = x1 + x3 + x5 + x6 = 3• 

X V = x1 + x2 + x4 + x6 = 3• 

For solving the equations, we can use the extra information that the seven variables consist of 
four 1’s and three 0’s. So three of the variables in each equation above are 1 and the fourth vari
able is 0. Since x6 is in every equation, if it were 0, then all the other variables would have to 

be 1, which cannot be true. So x6 = 1 . 

Also, subtracting the first two equations from each other gives that = x7 and subtracting x5 

the middle two equations from each other gives that = x4 . Substituting for , x6 , and x1 x4 x7 

leaves two distinct equations: 
+ x3 + x = 2x1 5 

2 x1 + x = 22 

That last equation can be solved with 0’s and 1’s only by = 1 and x2 = 0 .x1 

We know three of the four 1’s in X already: , , and x6 . There is only one 1 left and since x1 x4


= x7 , they cannot be 1. So , x5 , and  are 0, which leaves that x3 = 1 .
x5 x2 x7 

, , , , , ,Finally, X = (1 0 1 1 0 1 0) . 

Comment from the solutions editor: Brandon Levin could have used the all-ones vector

1 = (1 1 1 1 1 1 1) to create a fifth equation:, , , , , ,  

X • 1 = x1 + x2 + x3 + x4 + x5 + x6 + x7 = 4 

which represents the information that X contains exactly four 1’s. 



5/1/14. As illustrated below, we can dissect every triangle ABC into four pieces so that piece 1 
is a triangle similar to the original triangle, while the other three pieces can be assembled into 
a triangle also similar to the original triangle. Determine the ratios of the sizes of the three 
triangles and verify that the construction works. 
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FG 
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1 

2 

3 

4 
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 rotated
 180˚ 
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Comment: This problem was inspired by Problem 1365 in Sándor Róka’s excellent collection of 
2000 problems in elementary mathematics, which is also Problem 1113 in his earlier collection of 
only 1500 problems. 

Some solutions showed that several people were unsure what the instruction “verify that the 
construction works” meant. It meant to show that the pieces fit together properly—by showing 
that sides that had to fit together had the same length and angles that had to fit together into a 
straight line were supplementary—and that the three triangles were similar. 

We counted both the ratios of the lengths, 5 : 4 : 3, and the ratios of the areas, 25 : 16 : 9, as 
correct answers. “Size” is an ambiguous word, but the size of a polygon usually means the lengths 
of its sides. 

Solution 1 for 5/1/14 by Kristen Kozak (11/WA): 
The construction works if we make the dissection lines of triangle ABC parallel to its sides as 

shown below. 
B 

D 

FG 

H 

A C
E 

Making the lines parallel also allows us to make the following equalities 

DB = HF Opposite sides of parallelogram DBFH. 
DH = BF Opposite sides of parallelogram DBFH. 
GF = EC Opposite sides of parallelogram GFCE. 
GE = FC Opposite sides of parallelogram GFCE. 

By looking at the assembled triangle, we obtain these equalities. 

DG = GH Aligned where pieces 2 and 3 touch on assembled triangle. 
HE = BF Aligned where pieces 3 and 4 touch on assembled triangle. 



We find the ratio of the size of triangle ADE to the size of triangle ABC by finding the ratio of the 

length of segment DE to the length of segment BC , because DE and BC are corresponding 

edges. First we define x to be the length of segment DG . Then we use the equalities above to find 

the lengths of the the other line segments on segments DE and BC in terms of x. These lengths 
are shown below. 

D 

FG 

H 

x 

x 

2x 

2x 

3x 

CA E 

We find the length of DE by summing the lengths of DG , GH , and HE . We find the length of 

BC by summing the lengths of BF and FC . DE = 4x . BC = 5x . The ratio of the length of 

side DE to the length of side BC is 4 x : 5  x , which is 4 : 5. We square the ration of the lengths to 
find the ratio of the area of triangle ADE to the area of triangle ABC. We get 16 : 25. 

We find the ratio of the size of the assembled triangle to the size of triangle ABC by finding 

the ratio of the length of segment FC to the length of segment BC , because FC and BC are cor

responding edges. We know that the length of FC is 3 x and the length of BC is 5 x , so the ratio 
of their lengths is 3 : 5. We square the ratio of the lengths to find the ratio of the areas of the two 
triangles. We get 9 : 25. 

So, the ratio of the area of triangle ABC to the area of triangle ADE to the area of the assem
bled triangle is 25 : 16 : 9. 

Solution 2 for 5/1/14 by Sam McVeety (11/MN): 
In verifying that this construction works, I found a Euclidean method of creating the figure 

that clearly shows both the area ratios and verifies the construction. First, one must divide base 

AC into five equal parts.1 We now construct parallels to side BC at the four points dividing those 

five parts of AC . Those parallel lines divide side AB into five equal parts. Next, construct paral

1. Using Euclid’s method, we draw a line AM where M is a point not on line AC and 

create five adjacent equal segments on AM beginning at A, labeling the endpoint of the 

last segment as N. We next draw line segment CN and construct a parallel to CN at 

every endpoint of the equal segments on AM . These parallel lines will divide line seg

ment AC  into five equal parts. 



lels to side AC at the four points on AB where the parallels to side BC intersected. Those paral

lel lines divide side BC into five equal parts. Finally, constuct parallels to side AB from the four 

points on AC where the parallels to side AC intersected. Those parallel lines pass through the 

original four points of penta-section on side AC . We have now created 25 congruent triangles, 
which are similar to the original triangle ABC because the parallel lines cut equal angles at their 
intersections with parallel lines, and are congruent to each other because adjacent triangles share a 
matching side and triangles along each side of the large triangle ABC have sides that are from five 
equal parts of that side. 
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The divided triangle and its similar triangles, with important angles labeled 

In the construction, line segment DE lies over one of the parallels to BC , line segment FG 

lies over one of the parallels to AC , and line segment FH lies over one of the parallels to AB , as 
shown in the diagram above. Piece 1 of triangle ABC consists of 16 of the 25 tiny triangles, piece 
2 is one of the 25 tiny triangles, piece 3 consists of three of the 25 tiny triangles, and piece 4 con
sists of five of the 25 tiny triangles. Since the tiny triangles fit together, pieces 2, 3, and 4 fit 
together to form a triangle made of nine of the tiny triangles. 

Clearly, the ratio of the areas of triangle ABC to triangle ADE to the assembled triangle is 
25 : 16 : 9. 

Extending this construction to dividing triangles into n parts in similar fashion,1 where n is 
even and greater than 2, yields the following ratio of areas: 

⎛ n2 – 2n 2  + ⎞ 2: ⎛ n2 – 2n⎞ 2: (n 1 – )--------------------------- ----------------- 2 
⎝ 2 ⎠ ⎝ 2 ⎠ 

1. The triangle is divided so that one large part is similar to the original triangle, and the 
other n 1 – pieces are a small triangle and several trapezoids of increasing size that are 

assembled into a triangle similar to the original. For example, n = 6  would be: 

Rotate 180˚ 


	USA Mathematical Talent Search
	PROBLEMS / SOLUTIONS / COMMENTS
	Round 1 - Year 14 - Academic Year 2002-2003
	1/1/14. Some unit cubes are stacked atop a flat 4 by 4 square. The figures show views of the stac...
	Solution 1 for 1/1/14 by Ameya Velingker (9/PA):
	Solution 2 for 1/1/14 by James Albrecht (11/IL):

	2/1/13. Find four distinct positive integers, , , , and , such that each of the four sums , , , a...
	Solution 1 for 2/1/14 by Matthew Walsh (12/NY):
	Solution 2 for 2/1/14 by Rohit Dewan (9/MD):

	3/1/13. For a set of points in a plane, we construct the perpendicular bisectors of the line segm...
	Solution 1 for 3/1/14 by Agustya Mehta (11/OH):
	Solution 2 for 3/1/14 by Joel Lewis (12/NY):
	Solution 3 for 3/1/14 by Mitka (Dmitry) Vaintrob (8/OR):

	4/1/13. A transposition of a vector is created by switching exactly two entries of the vector. Fo...
	Solution 1 for 4/1/13 by Brian Ho (12/IL):
	Solution 2 for 4/1/14 by Yuyin Chen (11/MI):
	Solution 3 to 4/1/14 by Michael Chmutov (12/OM):
	Solution 4 for 4/1/14 by Michael Lieberman (12/PA):
	Solution 5 for 4/1/14 by Brandon Levin (12/OH):

	5/1/14. As illustrated below, we can dissect every triangle ABC into four pieces so that piece 1 ...
	Solution 1 for 5/1/14 by Kristen Kozak (11/WA):
	Solution 2 for 5/1/14 by Sam McVeety (11/MN):


