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1/4/12. Determine all positive integers with the property that they are one more than the sum of 
the squares of their digits in base 10. 

Solution 1 by Steve Byrnes (10/MA): Let the number be, in base ten, ...a5a4a3a2a1a0, where 
any of the a’s may be zero.  Then the condition is equivalent to 

2 2 2 2 2
1 + a0 + a1 + a2 + a3 + a4 + … = a0 + a110

1 
+ a210

2 
+ a310

3 
+ a410

4 
+ … , 

or 
0 = 1 + a0(a0 1 – ) + a1(a1 10 – ) + a2(a2 100 – ) + a3(a3 1000 – ) + a4(a4 10000 – ) + … 

a1(a1 10 – ) + a2(a2 100 – ) + a3(a3 1000 – ) + … = 1  – – a0(a0 1 – ) ≥ 1  –  – 9 × 8 = 73 – . 

All terms on the left side are negative, since the ai are integers 0 to 9.  Also, after the leftmost 

term, the terms are all zero or smaller that 73 – . Hence, we must conclude that 

0 = a2 = a3 = a4 = a5 = … . 

Therefore a0(a0 1 – ) 1 + = a1(10 – a1 ) . 
As a0 goes from 0 to 9, the left side can be 1, 3, 7, 13, 21, 31, 43, 57, or 73. As a1 goes from 0 to 
9, the right side can be 0, 9, 16, 21, 24, 25, 21, 16, 9, or 0. The only number these lists have in 
common is 21, so a0 = 5  and a1 = 3 or 7. Hence, the two possible numbers are 35 and 75. 

Solution 2 by Yuen-Joyce Liu (9/MA):  35 and 75 are the only two positive integers with the 
property that they are one more than the sum of the squares of their digits. 

Table 1: 

Number of digits in 
integer (n) 

Maximal integer repre

sented by k digits (10n-1) 

maximal sum of the squares of k digits 

plus 1 (92n+1) 

1  1  82

2 10 163 

3 100 244 

4 1000 325 

5 10000 406 

Table 1 suggests that the largest possible number of digits in an integer which satisfies the prob
lem requirement is 3. We use mathematical induction to prove 
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--------------------------------------------------------------

Claim: 10
n 1 – > 92 

n 1 + = 81n 1 +  for integer n > 3 . 
– 

Proof of Claim: For n = 4, 10
4 1

= 1000 > 81 × 4 1 + = 325 . 

Assume for n = k > 3 , that 10
k 1 – > 81k 1 + . Then for n = k 1 +  we have 

10
(k 1 + ) 1 – 

= 10 × 10
k 1 – 

> 10 81k 1 + )( 
= 810k 10 + 

= 81(k 1 + ) + (729k 71 – ) 
> 81(k 1 + ) 1 + 

Therefore the Claim is proved, and an integer which satisfies the problem requirement can have at 
most 3 digits. 

The maximal sum of squares of three digits plus one is 244. So there can be no integer n meeting 
the requirements with n > 244 . The largest possible integer of three digits with 1 or 2 in the hun
dreds digit is 299, whose sum of the square of its digits plus one is 166, so there can be no integer 

nn meeting the requirements with n > 166 . For 100 ≤ ≤  166 , the value of n which has largest 
sum of its squares plus one is n = 159, whose sum of squares plus one equals 107. So there can be 
no integer n meeting the requirements with n > 107 . For 100 ≤ ≤  107 , the value of n whichn 
has largest sum of its squares plus one is n = 107, whose sum of squares plus one equals 50. So 
there can be no integer n meeting the requirements with n > 99 . So the largest possible number 
of digits in an integer which satisfies the requirement  is reduced to 2. 

In order for a positive integer with the tens digit a and the units digit b to satisfy the problem 
requirement, we have 

2
+10a b = 1 + a 

2
+ b


2 2

a 10a– b(+ – b 1  + ) = 0 

a = 10 100 4 b
2 

– b 1  + ( )–± 
2 

-

Table 2: 

b 0 1 2 3 4 5 6 7 8 9 

100 4 b
2 

– b 1  + ( )– ≈ 
9.80 9.80 9.38 8.49 6.93 4 Unreal Unreal Unreal Unreal 

a ... ... ... ... ... 7 or 3 ... ... ... ... 

As calculated and shown in Table 2, we find that 35 and 75 are the only two positive integers with 
the property that they are one more than the sum of the squares of their digits in base 10. 

1/4/12. Editor’s Comment: We are grateful to Professor Bruce Reznick of the University of 
Illinois for communicating this problem to us. He created this problem for the 1990 Friendly 
Competition (The Indiana College Mathematics Competition). 
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⋅ ⋅ 

⋅ ⋅ 

2/4/12. Prove that if n is an odd positive integer, then N = 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n 

is 
an integer multiple of 2001. 

Solution 1 by Anatoly Preygel (10/MD): Note that 2001 factors into primes as 3 23 29  . 

Thus it is sufficient that 3 N , 23 N , and 29 N . 
n 2 – 

Note that for all integers n, a
n 

– b
n 

= (a b)(a
n 1 – 

+ a b + … + a b
n 2 – 

+ b
n 1 – ) and for– ⋅ 

n 2 – 
odd integer n, a

n 
+ b

n 
= (a b)(a

n 1 – 
– a b + … – a b

n 2 – 
+ b

n 1 – ) .  Thus, for odd n,+ ⋅ 

(a b)+ (a
n 

+ b
n) and (a b)– (a

n 
– b

n) . 

In this case, note that N = 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n 

and that 

(2269 1779 + ) (2269
n 

+ 1779
n) 

2269 1779 + = 4048 = 23 ⋅ 176 

(1730 1776 – ) (1730
n 

+ 1776
n) 
2  –1730 1776 –  = –46  = 23  ( )  ⋅ 

Thus, 23 

Now, note that N = 2269
n 

– 1776
n 

+ 1779
n 

+ 1730
n 

(just reordering terms), and that 

N . 

(2269 1776 – ) (2269
n 

+ 1776
n) 

2269 1776 – = 493 = 29 ⋅ 17 

(1779 1730 + ) (1779
n 

+ 1730
n) 

1779 1730 + = 3509 = 29 ⋅ 121 

Thus, 29 N . 

Last, note that 1779 = 3 ⋅ 593 , 1776 = 3 ⋅ 592 , and that 

(2269 1730 + ) (2269
n 

+ 1730
n) 

2269 1730 + = 3999 = 3 ⋅ 1333 

Thus 3 N . 

Thus we have 2001 N = 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n 

 for odd integer n. 

Solution 2 by Valerie Lee (10/NY): 

N = 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n 

N is multiple of 2001?: 2001 x = 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n 

. 

Factor 2001: 3 23 29  ⋅ x = 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n 

. 

If N is divisible by the factors of 2001, then it has to be divisible by 2001.  Writing N modulo 
these factors, the expressions should be equal to zero.  If this is true, then N is a multiple of 2001. 
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Consider mod 29: 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n(mod 29) 

Replace terms by remainders mod 29. ≡ 7n 
+ 10

n 
+ 19

n 
– 7

n(mod 29) 
n n

19
n ≡ ( 10 – ) (mod 29) ≡ 7n 

+ 10
n 

+ ( 10 – ) – 7
n(mod 29) 

Everything cancels if n is odd ≡ 0 

Continue mod 23: 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n(mod 23) 

Replace terms by remainders mod 23. ≡ 15
n 

+ 8
n 

+ 5
n 

– 5
n(mod 23) 

8 – 8 –15
n ≡ ( )n(mod 23) ≡ ( )n 

+ 8
n 

+ 5
n 

– 5
n(mod 23) 

Everything cancels if n is odd ≡ 0 

Last mod 3: 2269
n 

+ 1779
n 

+ 1730
n 

– 1776
n(mod 3) 

Replace terms by remainders mod 3. ≡ 1n 
+ 0

n 
+ 2

n 
– 0

n(mod 3) 

1 – 1 –2
n ≡ ( )n(mod 3) ≡ 1n 

+ 0
n 

+ ( )n 
– 0

n(mod 3) 
Everything cancels if n is odd ≡ 0 

Thus, N is divisible by 2001 when n is odd. 

Editor’s Comment:  We thank our problem editor, Dr. George Berzsenyi, for this timely prob
lem. 

3/4/12. The figure on the right can be divided into two congruent halves that are 
related to each other by a glide reflection, as shown below it.  A glide reflection 
reflects a figure about a line, but also moves the reflected figure in a direction 
parallel to that line. For a square-grid figure, the only lines of reflection that 

° 
keep its reflection on the grid are horizontal, vertical, 45 diagonal, and 

° 
135 diagonal. Of the two figures below, divide one figure into two congruent

halves related by a glide reflection, and tell why the other figure cannot be

divided like that.
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Solution 1 by Katherine Herbig (11/WA): The figure must slide along a line 
parallel to the line it is reflected across. Therefore, the figure and its reflection 
must have the same number of squares that either cut the line or share an edge 
with it. Therefore, the line of reflection must cut through an even number of 
squares, or touch the same number of edges on each side of the line. 

In addition, there must be the same number of squares on each side of the line 
because all squares on one side of the line at the beginning of a glide reflection 
will be on the other side after the glide reflection. 

There is only one line in either of the squares that fits both requirements. It is 
shown in the top diagram on the right.  The division is shown in the lower dia
gram. 

The other figure cannot be divided by a glide reflection because it has only one 
line that is even near the middle of the figure.  This line crosses through an even number of 
squares, but does not divide the figure evenly. 

Solution 2 by Katheryn Green (11/WV): 

The figure can be divided using the 45° glide reflection: 

For a glide reflection to be possible, the reflecting line must divide the 
figure so that there is an equal number of squares on each side. Notice that there is a total of six 
squares on each side of the line in the example, and a total of nine on each side in the solution 
above.  The figure at left below cannot be divided into two congruent halves related by a glide 
reflection because, as shown, it is impossible to divide the figure in half with a horizontal, vertical, 
45° , or 135° line that lies along the grid lines. 

9.5 

8.5 

5 

13 

9.5 

8.5 

7 

11.5 8.5 8.5 10 

6.5 9.5 9.5 8 

11 
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Solution 3 by Igor Zhitnitskiy (10/NY): It is given C 
that the line of reflection can only be horizontal, ver
tical, or diagonal at 45 degrees in either direction. 
Thus for a given figure, there is a maximum of four B 
lines of reflection. However, a line of reflection must 
also have an equal area on either side (since a glide 
reflection only moves the reflected portion parallel to 
the line and does not change its area). It must also go 
through corners or midpoints of lines on the square 
grid; it cannot go through any other point because a 
reflection would not be possible.  Keeping this in 
mind, it is simple to verify, by trial and error, that 
only one line of reflection exists for the figure at right 
(expressed as a broken line from the corner of block 4 
to the corner of block 13). The other figure has no 
such lines of reflection that maintain equal areas 
while intersecting only corners and midpoints; thus 
any kind of glide reflection is impossible. 

1234 

56 

10 9 

8 7 

11 

12131415 

161718 

A 

Once the line of reflection is identified the procedure for determining the congruent halves is as 
follows.  Since blocks 1 and 18 are the only two blocks with a distance of 2 diagonals from their 
distant corners to the line of reflection, they must be corresponding parts of the two congruent 
halves.  Let us denote blocks associated with block 1 as “white” and the blocks associated with 
block 18 as “gray”, and the side of reflection on which block 18 is located as the “gray” side, 
with the other side of the reflection line as the white side. From this relationship it is clear that 
blocks on the white side are related to their corresponding blocks on the gray side by a reflection 

Band 1 block movement “up” along the line of reflection (as in the diagram A → →  C ). If block 
12 were white, then its glide reflection would be 1 block along the axis away from block 16. 
However there is no block there. Thus block 12 must be gray. There must then be a white block 
reflected across and 1 block “down” from 12. This is block 14; thus block 14 is white. These two 
objects must have their blocks connected to form one figure, so blocks 18 and 12 must be 
“bridged” by either blocks 17, 16, and 13, or blocks 15, 11, 10, 9,and 13. However if the later is 
used, block 14 is isolated from block 1. Thus blocks 17, 16,and 13 are gray. The corresponding 
blocks for these are white, so blocks 5, 9, and 10 are white. If block 8 is gray, then there must be 
a white block one block “down” from block 3 along the axis.  There is no block there, so block 8 
must be white, and its counterpart, block 6, is gray. 6 must not be isolated from the gray figure; 
thus 15, 11, and 7 must be gray. Their respective counterparts 2, 3, and 4 must be white. As 
stated earlier the other given figure has no applicable lines of reflection, so this is the one and only 
glide reflection possible for the two figures. 

Editor’s Comment:   We are indebted to Dr. Erin Schram of the National Security Agency for 
formulating this problem, and to Professor Kimmo Eriksson of Sweden, whose article “Splitting a 
Polygon into Two Congruent Pieces” in the May 1996 issue of The American Mathematical 
Monthly served as an inspiration for this problem. 
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4/4/12. Let A and B be points on a circle which are not diametrically opposite, and let C be the 
midpoint of the smaller arc between A and B. Let D, E, and F be the points determined by the 
intersections of the tangent lines to the circle at A, B, and C. Prove that the area of ΔDEF is 

greater than half of the area of ΔABC . 

Solution 1 by Rishi Gupta (8/CA): Let O be the 
center of the circle, with r as the radius. FO splits 
the diagram in half, so one side is symmetric to the 
other. 

First, I saw that AF > w because of right ΔGAF . 

AF = m + n , as shown in the diagram, so 

+m n  > w . Now DA ≅ DC (because both are tan
gents), so we can replace our equation with 
m DC  > w . Because of right ΔCDF , m DC  .+ > 
Therefore, 2m w .> 

yThen, I wanted to prove that ---x = ---- . I drew a per-
n m 

pendicular line segment down from D to point H on 
AB, so that DH = x . Now ΔHAD Δ∼ CDF
because both are right triangles and
∠DAG ∠≅ FDC  ( DE 

O 
r 

A B 

C 

H G 
x 

nD E 

y 
m 

F 

w 

AB ), Therefore, 

HD CF x y--------- = -------- , or --- = ---- .
DA FD n m 

Going back to my previous inequality, 2m w , we have:> 
2m w> 

y x ⋅ ⎛ ⎞2m ⋅ ⎛ ⎞ > w ---⎝ ⎠  ⎝ ⎠m n 

wx 
ny > ------- .

2 

The area of ΔDEF = ny and the area of ΔABC = wx . Substituting, we have the area of

ΔDEF  is greater than half the area of ΔABC . 
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Solution 2 by Nathaniel Jones (12/IA): In the fig
ure at the right, let CG = a , BG = b , EG = x , 

)
 )


and CF = y . Since mAC = mBC , 

m∠ABF = 2m CBF  . Let∠ 
m∠ABC = m∠CBF = θ . Using trigonometry, 

atan θ = --- , and
b 

a
2⎛ ⎞  

btan θ ⎝ ⎠  2abtan2θ = ---------------------- = -------------------- = ---------------- = ---x . 
2 2 b1 tan– 

2θ ⎛ ⎞  b
2

– aa
1 – ⎜ ⎟2⎝ ⎠b

2ab
2 

Thus, x = ---------------- . Since both AB and DF are per
2 2

b – a 

pendicular to EG, m∠ABE = m∠DFE .  This 

B A 

C 

b G 

a 

yF D 

x-a 

E 

2θ 

θ
θ 

⎛ 2ab
2 ⎞ 

⎜ ----------------⎟ – a
2 

–2ab x a ⎝ b2
– a ⎠ 

means that tan2θ = ---------------- = ----------- = ------------------------------- . 
yb

2
– a 

2 y 

2 2 
a + bCombining this with the expression above for tan2θ gives y = ----------------- .

2b 

2abThe area of ΔABC is --------- = ab , and
2 

2 5 41⎛ a 
2

+ b ⎛ 2ab
2 

a + 2a 
3
b

2
+ abthe area of ΔDEF is 2 × --- -----------------⎞ ⎜ ---------------- – a⎟

⎞ 
= ----------------------------------------- . To show that the area of

2 22⎝ 2b ⎠ ⎝ b2
– a ⎠ 2(b

3
– a b) 

5 2 4
1 a + 2a 

3
b + abΔDEF is greater than half the area of ΔABC , it must be proven that ---ab < ----------------------------------------- , or

22 2(b
3

– a b) 
5 2 4 

a + 2a 
3
b + ab 1 2 2

that 0 < ----------------------------------------- – ---ab . This statement simplifies to 0 < a 
4

+ 3a b , and since both a
2 22(b

3
– a b) 

and b are always positive, the statement is always true. So the area of ΔDEF is greater than half 

the area of ΔABC . 
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Solution 3 by Kevin Yang (11/IL): Let  W be the 
midpoint of line segment AB. Line segment AD is 
congruent to DC because of the two-tangent rule. 
Now, we know that AC is longer than AW, because 
the hypotenuse of any right triangle is longer than 
either leg.  Also, the lengths of AD plus that of DC 
will be greater than the length of AC because of the 
triangle inequality. So, the length of AD plus that of 
DC will be greater than the length of AW. And thus, 
DC will be longer than half the length of AW. 

From this we know that DE is more than half the 
length of AB. Since the triangles DFE and ABF are 
similar (because AB is parallel to DE), we also know 
that FC is more than half the length of FW. In other 
words, FC is longer than CW. The area of a trian
gle is (1/2)(base)(height), so since the base of tri
angle DEF is more than half that of triangle ABC, 
and its height greater than that of triangle ABC, 
then the area of triangle DEF must be more than 
half the area of triangle ABC. 

A B 

C 

W 

D E 

F 

Editor’s comment:  This historically interesting problem was proposed by Dr. Peter Anspach of 
NSA. He found it in a paper by mathematician/astronomer Christiaan Huyghens, who used it as a 
stepping stone for calculating the digits of pi. 

5/4/12. Hexagon RSTUVW is constructed by starting with U
a right triangle of legs measuring p and q, constructing 
squares outwardly on the sides of this triangle, and then 
connecting the outer vertices of the squares, as shown in 

Tthe figure on the right. 
V 

Given that p and q are integers with p q , and that the> 
area of RSTUVW is 1922, determine p and q. W p

q

R S 
Page 9 



--- ---

Solution 1 by Laura Pruitt (11/MA): 
From the given information we can deter- U

mine the following segment lengths,

areas, and angles:


2α(ABUT ) = p 
2

+ q 

α(ACRS) = p 
2 

α(BCWV ) = q 
2 

p 

q 

R S 

W 

V 
p 

2 
q 

2
+ 

p 
2 

q 
2

+ 

p 
2 

q 
2

+ 

p 
2 

q 
2

+ 

p 
2 

q 
2

+ 

p 

p 

p 

q 

q 

q 

A 

B 

C 

T 
pqα(ΔABC) = -----
2 

pqα(ΔCRW ) = -----
2 

We now need only the areas of ΔBUV

and ΔAST .

m(∠VBU ) + m(∠CBA) = 180° so 

psin (∠VBU ) = sin (∠CBA) = ---------------------
2 2 

p + q 
Similarly 

qsin (∠TAS) = sin (∠BAC) = ---------------------
2 2 

p + q 
So 

1 2 2 1 2 2 p ⎞ pqα(ΔBUV ) = ⎛ ⎞ q p  + q sin (∠VBU ) = ⎛ ⎞ q p  + q ⎜
⎛ 
----------------------⎟ = ------⎝ ⎠  22 ⎝ ⎠  ⎝ p 

2
+ q 

2⎠ 2 

11 2 2 ⎛ ⎞ 2 2⎛ q ⎞ pq--- --- q p  + q ⎜----------------------⎟ = ------α(ΔAST ) = ⎛ ⎞ p p  + q sin (∠TAS) = ⎝ ⎠2⎝ ⎠  2 ⎝ p 
2

+ q 
2⎠ 2 

We now know the areas of all the pieces of the hexagon in terms of p and q. So 
1922 = α(ABUT ) + α(ACRS) + α(BCWV ) + α(ΔABC) + α(ΔCRW ) + α(ΔBUV ) + α(ΔAST ) 

2 2 2 2 pq pq pq pq 2 
= p + q + p + q + ------ + ------ + ------ + ------ = 2 p 

2
+ 2q + 2 pq

2 2 2 2 

2 
2 – q ± q – 4(q 

2 
961– )So 961 = p 

2
+ pq + q . The quadratic equation gives p = ---------------------------------------------------------- .  Looking

2 
2

at the determinant, q 
2

– 4(q 961– ) = 3844 – 3q 
2 

, we see that, since the discriminant must be 

< qgreater than or equal to zero, since q p , and since q is an integer, it follows that 1 ≤ ≤ 17 . 
Furthermore, from this range we can see that the square root of the discriminant must be between 
55 and 61 inclusive. Call this value s. 
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3844 – s 
2

2 
---------------------- = q , which must be a perfect square. Of the range 55 to 61, only one value of s

3 

3844 – 3481
2 

works: s = 59. -------------------------------- = 121  giving q = 11 .
3 

11 –  ±This gives p = 

So p = 24, q = 11. 

gle A, B, and C. 
pq

ABC, is obviously ------ . 

. 

[ABC], the notation meaning the area of 

2  from the Pythagorean Theorem. 

RSTUVW] is the sum of all the 

2 2( )– 
2 

------------------------------------------------------------------- = 

p 

q 

U 

W 

V 
A 

B C 

p 

q q 

p 

Solution 2 by Ho Seung (Paul) Ryu (09/KS): To make 
referring to the regions easier, label the vertices of the trian-

We also have 

Additionally, by looking at the diagram, we also see that 

, so [

11 4 11 961 – 24  

T2


[ABWV] = q2,


[BCSR] = p2


[ACTU] = p2 + q


pq
[VAU] = [CST] = -----

2 R S 
2

individual areas, which sum to 2 p 
2

+ 2 pq + 2q . So we 
2 2 2

now have that 1922 = 2 p 
2

+ 2 pq + 2q , or simply 961 = p + pq + q = ( p q)2
– pq , or+ 

2
961 + pq = ( p q) . Since 961 = 31

2 
, p q  is greater than 31.+ + 

If p q is 32, pq must equal 63. No such combination exists. The same occurs for p q equal+ + 

+ , ,to 33 and 34. But if p q = 35  , then ( p q) = (24 11 )  satisfies the inequality. 

So if (p, q) = (24, 11), then the area of RSTUVW is 1922. 

Editor’s comments:  This problem was inspired by Problem 54 in Quantum Quandaries, pub
lished in 1996 by the National Science Teachers Association. We thank Dr. Berzsenyi for posing 
this problem. 
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