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1/4/10. Exhibit a 13-digit integer N that is an integer multiple of 213 and whose digits consist of 
only 8s and 9s. 

Solution 1 by Ann Marie Cody (12/MA):  Let N = ABCDEFGHIJKLM, where A, B, ..., M are 
digits. 

N is divisible by 2, so M must be even.  Therefore M = 8. 

N = ABCDEFGHIJKx100 + LM and is divisible by 213. N and ABCDEFGHIJKx100 are 
each divisible by 4, so LM must be divisible by 4. LM = L8, 88 is divisible by 4, and 98 is not, so 
LM = 88. 

N = ABCDEFGHIJx1000 + KLM is divisible by 8 and 1000 is divisible by 8, so KLM 
must be divisible by 8. 8 does not divide 988, so KLM = 888. 

N = ABCDEFGHIx10,000 + JKLM. N and 10,000 are divisible by 24, so JKLM is also. 
JKLM = J888. 8888 is not divisible by 16 but 9888 is, so JKLM = 9888. 

N = ABCDEFGHx100,000 + IJKLM. N and 100,000 are divisible by 25, so IJKLM is 
also. IJKLM = I9888. 99888 is not divisible by 32 but 89888 is, so IJKLM = 89888. 

N = ABCDEFGx1,000,000 + HIJKLM. N and 1,000,000 are divisible by 26, so HIJKLM 
is also. HIJKLM = H89888. 889888 is not divisible by 64 but 989888 is, so HIJKLM = 989888. 

N = ABCDEFx10,000,000 + GHIJKLM. N and 10,000,000 are divisible by 27, so 
GHIJKLM is also. GHIJKLM = G989888. 8989888 is not divisible by 128 but 9989888 is, so 
GHIJKLM = 9989888. 

N = ABCDEx100,000,000 + FGHIJKLM. N and 100,000,000 are divisible by 28, so 
FGHIJKLM is also. FGHIJKLM = F9989888. 99989888 is not divisible by 256 but 89989888 is, 
so FGHIJKLM = 89989888. 

N = ABCDx109 + EFGHIJKLM. N and 109 are divisible by 29, so EFGHIJKLM is also. 
EFGHIJKLM = E89989888. 889989888 is not divisible by 512 but 989989888 is, so 
EFGHIJKLM = 989989888. 

N = ABCx1010 + DEFGHIJKLM. N and 1010 are divisible by 210, so DEFGHIJKLM is 

also. DEFGHIJKLM = D989989888. 9989989888 is not divisible by 210 but 8989989888 is, so 
DEFGHIJKLM = 8989989888. 

N = ABx1011 + CDEFGHIJKLM. N and 1011 are divisible by 211, so CDEFGHIJKLM is 

also. CDEFGHIJKLM = C8989989888. 88989989888 is not divisible by 211 but 98989989888 
is, so CDEFGHIJKLM = 98989989888. 

N = Ax1012 + BCDEFGHIJKLM. N and 1012 are divisible by 212, so BCDEFGHIJKLM 

is also. BCDEFGHIJKLM = B98989989888. 998989989888 is not divisible by 212 but 
898989989888 is, so BCDEFGHIJKLM = 898989989888. 



N and 1013 are divisible by 213. N=ABCDEFGHIJKLM = A98989989888. 

9898989989888 is not divisible by 213 but 8898989989888 is, so 
N = 8898989989888 

Solution 2 by Oaz Nir (10/CA): Answer: 8898989989888 
Proof: More generally, we prove that for all positive integers n and non-zero digits a and 

b, with a even and b odd, there exists an integer xn with exactly n digits that is an integer multiple 

of 2n, whose digits consist of only a’s and b’s.  The proof is by mathematical induction. For the 

base case we take x1 = a. Clearly this number is divisible by 21 = 2, as required. For the induction 
step, we assume that an integer xn exists with the desired properties, and we show how to con
struct xn+1. We need two cases: 

Case 1: xn is divisible by 2n+1 . 

Take xn+1 equal to xn with the digit a appended to the left. That is, xn 1 + = a ⋅ 10
n 

+ x .n 

It is easy to see that xn+1 is divisible by 2n+1 (because both terms a ⋅ 10
n 

and xn are). 

Case 2: xn is not divisible by 2n+1 . 

Take xn+1 equal to xn with the digit b appended to the left. That is, xn 1 + = b ⋅ 10
n 

+ x .n 

It is easy to see that xn+1 is divisible by 2n+1 (because both terms b ⋅ 10
n 

and xn are odd multiples 

of 2n, so their sum is an even multiple of 2n, and is therefore a multiple of 2n+1 as required). 
This completes the proof of the general result. We can use our method of proof to actually 

calculate the numbers xn. In particular, when a = 8, b = 9,  and n = 13, we proceed as follows: x1 
= 8,  x2 = 88, x3 = 888, x4 = 9888, x5 = 89888, x6 = 989888, x7 = 9989888, x8 = 89989888, 
x9 = 989989888, x10 = 8989989888, x11 = 98989989888, x12 = 898989989888, and x13 = 
8898989989888, where the numbers x2, x3, x5, x8, x10, x12, and x13 were formed as in Case 1, 
and the numbers  x4, x6, x7, x9, and x11, were formed as in Case 2. 

Editor’s comments:   We congratulate Mr. Nir for winning the Brilliancy Award from the Bay 
Area Mathematical Olympiad for a very elegant solution. The BAMO is a regional mathematical 
competition in the San Francisco area. 

Solution 3 by Zhihao Liu (9/IL):  Answer: 8898989989888 

N is divisible by 213. Therefore for every integral value of k from 1 to 13, the last k digits 

of N are divisible by 2k . Working from right to left, the unit, tens, and hundreds digits must all be 

8, since 888 is divisible by 23 . 

Also, if a k-digit number is divisible by 2k, then when it is divided by 2k+1, the remainder 

is either 0 or 2k . Using this fact, we can deduce the other digits of N. Since 
888 ≡ ≡  9000mod16 , thus 9000 888 +  ≡ 8  8  + , and 9888 is a multiple of 16. Similarly, 8 

9888 ≡ 0mod32 , hence 32 divides 89888. Performing this algorithm eight more times: 

89888 ≡ 32mod64 



⇒ 989888 ≡ 64mod128 

⇒ 9989888 ≡ 0mod256 

⇒ 89989888 ≡ 256mod512 

⇒ 989989888 ≡ 0mod1024 

⇒ 8989989888 ≡ 1024mod2048 

⇒ 98989989888 ≡ 0mod2048 

⇒ 898989989888 ≡ 0mod4096 

⇒ 8898989989888 

Indeed, 8898989989888 is divisible by 213 as it can be expressed as 8192x1086302489. 
Therefore, N = 8898989989888. 

Editor’s comments on modular arithmetic: This may be a good opportunity to briefly discuss 
modular arithmetic as used in Mr. Liu’s solution above. Instead of the standard clock with twelve 
digits, 1, 2, 3, ..., 12, consider a clock that has p digits, 0, 1, 2, ..., p-1. As a specific example, con
sider a clock that has p = seven digits, 0, 1, 2, 3, 4, 5, 6. With this clock we add as follows: 4 + 5  
corresponds to the time starting at four o’clock and advancing five hours to nine o’clock, which 
on this clock is 2 o’clock. Thus, on this clock 4 + 5 = 2. We write this 4 5 ≡ 2 , or to make sure+ 
everyone knows we are doing clock arithmetic on a clock with 7 digits, we might write 
4 5 ≡ 2mod7 . We read this expression as four plus five is congruent to 2 modulo seven. Simi+ 

larly, 6 3  ≡ 2 , 4 + 3 ≡ 0 , etc. Notice in each case, we only care what the remainder is after+ 
division by seven; in the example 4 + 5, notice 4 + 5 = 9, and 9 divided by 7 is 1 with a remain

+der of 2, so 4 5 ≡ 2mod7 . We don’t seem to care what the quotient is, we only care about the 
remainder after division by seven. We can also subtract with clock arithmetic: 4 - 5  corresponds 
to starting at four o’clock and backing up five hours, which on this clock is 6 o’clock. Thus, 
4 5 ≡ 6 . Observe that 4 4 ≡ 4 3+ ≡ 0 , so we may think of 3 as -4; that is the additive inverse– – 
of 4 is 3 [ i.e. three is the number we must add to four to get zero]. Knowing how to add allows 
us to multiply: notice that 3 5  corresponds to adding 5 three times, and we already know how×


× + + 
to add, so 3 5 = 5 5 5  ≡ 1 . With this idea we can now multiply in this clock arithmetic 

system. Other examples of multiplication are 6 3 ≡ 4 , 4 3 5 , etc. So now we can add, sub× × ≡ 
tract, and multiply on this clock. Division is more difficult. If our clock has a prime number of 
digits, then we can always divide by nonzero numbers. But if our clock has p digits where p is not 
prime, we may not always be able to divide by every nonzero number. In our example with p = 7  

× + +observe that 3 5 = 5 5 5  ≡ 1 , so five is the multiplicative inverse of three [i.e. five is the 

1 1
number we must multiply by three to get one]. We write --- ≡ 5mod7 . Similarly, --- ≡ 4mod7 ,

3 2 

1 1 --- ≡ 2mod7 , etc. Just to make sure you understand, before reading ahead, find --- ; that is, find the
4 6 
number you must multiply by 6 to get 1 modulo 7. 

When p is a prime, Euclid’s algorithm helps us find multiplicative inverses. When p is 7 it 
is easy to do this just by guessing and trying. But if p is large, say p = 163 or an even larger prime 
number, it is more difficult to guess and check. With p = 163 we use the Euclidean algorithm as 
in the following example. Suppose we have the number 25 and we wish to find the multiplicative 



inverse of 25 modulo 163. That is, we wish to find an integer k such that 25 × k ≡ 1mod163 . The 
Euclidean algorithm gives us the greatest common divisor of 25 and 163. Since 163 is prime and 
0<25<163, we know this will be one. The process of the Euclidean algorithm gives us more infor
mation, which solves our problem. This process is sometimes called the extended Euclidean 
algorithm: 

Divide 25 into 163 to get quotient 6 and remainder 13. 13 = 163 – 6 × 25 . 

Divide 13 into 25 to get quotient 1 and remainder 12. 12 = 25 – 1 × 13 . 

Divide 13 by 12 to get quotient 1 and remainder 1. 1 = 13 – 1 × 12 . 
Now back up through this process. 

1 = 13 – 1 × 12 

1 = (1 × 13) – 1 × (25 – 1 × 13) = (2 × 13) – (1 25)× 
1 = 2 × (163 – 6 × 25) – (1 25)× 

1 = (2 × 163) – (13 × 25) 
Thus, the greatest common divisor of 25 and 163 is one, and can be written as in the last 

equation above. Since I only care about the remainder after division by 163, and the term 2 × 163 
will contribute zero to this remainder, I can write 

1 ≡ –13 × 25mod163 

Since 13– ≡ 150mod163 , we rewrite this as 

1 ≡ 150 × 25mo 163 . 
So the multiplicative inverse of 25 modulo 163 is 150. With clock arithmetic on a clock with p =  
163, division by 25 is equivalent to multiplication by 150. 

Again, when p is prime we are guaranteed that each nonzero digit will have a multiplica
tive inverse, so we can divide by all nonzero digits. When p is not a prime we can still add, sub
tract, and multiply modulo p, but we cannot always divide by nonzero numbers because on these 
clocks there are nonzero divisors of zero.

1 --- ≡ 6mod7 is the answer to the exercise posed above. Demonstrate it using Euclid’s
6 

Algorithm. 

Editor’s comments: Thanks go to Professor George Berzsenyi, the creator of the USAMTS and 
our continuing supporter, for posing this interesting problem. Round 4 completes the tenth year 
of the USAMTS. 

2/4/10. For a nonzero integer i, the exponent of 2 in the prime factorization of i is called ord2(i). 

For example, ord2(9) = 0  since 9 is odd, and ord2(28) = 2 since 28 = 22 x 7. The numbers 

3n - 1 for n = 1, 2, 3,... are all even, so ord2(3n - 1) > 0 for n > 0. 

a) For which positive integers n is ord2(3n - 1) = 1? 

b) For which positive integers n is ord2(3n - 1) = 2? 

c) For which positive integers n is ord2(3n - 1) = 3? 
Prove your answers. 



3
nSolution 1 by Aaron Marcus (10/TX): (a.) 1– can be factored into 

– + +(3 1)(1 3 3
2

+ … + 3
n 1– ) . Since the second factor consists of only odd elements, the sum 

will be odd if and only if there are an odd number of elements. Since there are (n-1)+1=n  ele

ments (exponents 0 through n-1), ord2(3n - 1) = 1 when n is odd, or when n = 2k + 1. 
(b.) 	Consider when n is even. The terms in the second factor can be paired. Thus, 

+ +  3
n 1– )3

n 
1– = (3 1– )(1 3 3

2
+ … + 

((	 ⋅ 3
n 2– ⋅= 2 1 + 3 ⋅ 1) + (3

2
+ 3 3

2 ) + …( + 3 3
n 2– )) 

= 2 4  ⋅ 1) + (4 3
2 ) + …( ⋅(( ⋅ 4 3

n 2– )) 

…3
n 2– )= 8 1 + 3

2
+( 

Since n can only be even or odd, there is no case where ord2(3n - 1) = 2 (it must be either 1 or 
greater than or equal to 3). 

(c.) From above, for ord2(3n - 1) = 3, (1 3
2

+ … + 3
n 2– ) must be odd.+ 

n -- –- 1

+ 3
n 2– 

1 3
2

+ … + = 1 + + 9
2

+ … + 9
2 

. Since all terms are odd, this can only be odd if9 

n	 n
there are an odd number of terms. There are --- terms in the factor, so ord2(3n - 1) = 3  when --- is

2 2 
odd, or when n = 4k + 2. 

Solution 2 by Reid W. Barton (10/MA):  Use ⇔ to represent if and only if. Note that 

(ord2( )  = k ) ⇔ 2k 
divides n and 2

k 1+ 
does not divide n ⇔ n ≡ 2k (mod2

k 1+ ) .n


(a.) Answer: n odd.


( ( (We have ord2(3
n 

1– ) = 1 ⇔ 3n 
1– ≡ 2 mod 4) ⇔ 3n ≡ 3 mod 4) . Now 3

1 ≡ 3 mod 4) and 

(	 (3
2 ≡ 1 mod 4) , so 3

n ≡ 3 mod 4) if and only if n is odd. 
(b.) Answer: no n. 

( ( (Since ord2(3
n 

1– ) = 2 ⇔ 3n 
1– ≡ 4 mod 8) ⇔ 3n ≡ 5 mod 8) , and 3

1 ≡ 3 mod 8) , 

( (3
2 ≡ 1 mod 8) , there is no n for which 3

n ≡ 5 mod 8) , and therefore no n for which ord2(3n - 1)  
= 2. 

((c.) Answer: n ≡ 2 mod 4) . 

( (in this case, ord2(3
n 

1– ) = 3 ⇔ 3n 
1– ≡ 8 mod 16) ⇔ 3n ≡ 9 mod 16) , and 

( ( (	 (3
1 ≡ 3 mod 16), 3

2 ≡ 9 mod 16) , 3
3 ≡ 11 mod 16) , and 3

4 ≡ 1 mod 16) , so

( (3
n ≡ 9 mod 8) if and only if n ≡ 2 mod 4) . 

Editor’s comment:  This problem was posed by Dr. Erin Schram of the National Security 
Agency.  Dr. Schram contributed one problem for each round of Year 10. His involvement is 
greatly appreciated. 



1( ) = --- for k = 1, 2, 3, ..., 99. Deter-3/4/10. Let f be a polynomial of degree 98, such that f k
k


mine f(100).


( )  1 . This expression hasSolution 1 by Wei-Han Liu (8/TN):  Consider the expression f x ---– 
x 

roots at 1, 2, 3, 4, ..., 99. However, this is not a polynomial. Next consider the function 
g x x( ) = xf ( )  1– . (a) 

Because f(x) is a polynomial of degree 98, g(x) is a polynomial of degree 99. It has the roots 1, 2, 
3, 4, ..., 99. Therefore it must be of the form 

g x (( ) = c x  1– )(x 2– )(x 3– )…(x 99– ) (b) 
where c is a constant. To determine c we find that g(0) = -1 from equation (a). So we put 0 in for 
x in equation (b) and get g(0) = -c(99!) = -1, so c = 1/(99!) and 

(x 1– )(x 2– )(x 3– )…(x 99– )
g x( ) = ----------------------------------------------------------------------------- . (c)

99! 
We want to find f(100), so we plug 100 into both equation (a) and (c) and get 

(100 1– )(100 2– )(100 3– )…(100 99– )100( f (100)) 1– = ----------------------------------------------------------------------------------------------------
99! 

100( f (100)) 1– = 1 

100( f (100)) = 2 

1
f (100) = -----

50 

1Therefore, f (100) = ------ .
50 

Solution 2 by Daniel Moraseski (11/FL): Generalize by replacing 99 with n. Since f(k)k = 1 for 
all integers k between 1 and n, 

f x ( –( )x 1– = A x  1– )(x 2– )…(x n) , 
where A is a constant, is also true for these values of k. Now plug in x = 0 and get 

1– = An! 1–( )n 

1–( )n 

A = ------------- . 
n! 

If we set A equal to this, the above equation is also true at x = 0. Since it is of degree n and is 
valid at n+1 values, it is true for all x. Now we find f(n+1).

( )n 1– 

( 1–
1–f n  1+ )(n 1+ ) 1– = --------------------n! = ( )n 1– 

n! 

( )n 1– 

( 1– 1+
f n  1+ ) = ----------------------------

n 1+ 

( ( 2
f n  1+ ) = 0 for n even. f n  1+ ) = ------------ for n odd. 

n 1+ 
Applied to our specific problem, n = 99, so f(100) = 1/50. 



,4/4/10. Let A consist of 16 elements of the set {1 2, 3.…, 106} , so that no two elements of A 
differ by 6, 9, 12, 15, 18, or 21.  Prove that two elements of A must differ by 3. 

Solution 1 by Kasia Kobeszko (12/LA):  (Proof by contradiction) Since all the differences for
bidden within A (including the difference in question, 3) are multiples of three, the set A can be 
separated into numbers coming from three disjoint sources: numbers in the form 3n, in the form 
3n+1, and in the form 3n+2, for integer n’s.  The largest of these sources has 36 elements. 

Let us assume that no two members of A differ by 3. 
This, combined with the stated difference restrictions, means that two members of A from 

any one source must differ by at least 24 to both be eligible for membership in A, or when count
ing by threes, they must be at least eight apart. That means that the most members that can come 
from one source is (size of source) ⁄ 8 ≤ 36 ⁄ 8 = 5 , where w is the ceiling function indi

cating the smallest integer ≥ w . 
With at most 5 elements from each of three sources, A can have at most 15 elements. This 

contradicts the definition of A as a 16-element set, and disproves our assumption. 

Solution 2 by Emily Kendall (10/IN):  Assume temporarily that no two members of A differ by 
three. Consider all members of A congruent to c (mod 3), where c = 0, 1, or 2. Because these 
members all differ by multiples of three, they must differ by at least 24. 

106 can be divided into at most 4 intervals of 24.  Since any two consecutive members of 
A congruent to c (mod 3) must be separated by one of these intervals, there can be at most 5 such 
members. 

Therefore, assuming that no two members differ by three, there are at most five members 
of A congruent to 1 (mod 3), five congruent to 2 (mod 3), and five congruent to 0 (mod 3), for a 
total of 15. So in order to have 16 elements in set A, two of them must differ by three. 

Solution 3 by Vikki Kowalski (11/AR):  What follows is an attempt to construct a set of 16 ele
ments that meet all the required conditions of set A and have no two elements which differ by 3. 

That would mean that for each new element added to A, 14 other potential elements are 
made invalid for consideration to become part of the set A. The maximum number of times that a 
single element could be counted (“overlap” between the set that one member of A makes invalid 
and the set that another member of A makes invalid) is twice. 

This is because in order for an element to be removed from consideration twice, it must be 
3n (Let us define n and all integers ni as integers such that -8 < n < 8) greater than a member of A 
and 3n units less than a member of A. If an element was removed from consideration three times, 
this would mean that there must have been an element chosen for set A that was 3n1 from it and 
one 3n2 from it in the same direction (since there are only 2 directions and 3 elements, pigeonhole 
principle). However, this must mean that they are 3(n1 - n2) units apart, and -8 < n1 - n2 < 8, so 
they could not actually both be members of the set A. 

The only problem that remains is the elements near the upper and lower limits of the set. 
If items for set A are selected sufficiently close to the first element in the set, they will each elimi
nate only 7 elements from consideration for set A. Without loss of generality, we may choose the 
elements near the lower limit of the set (1, 2, and 3). Selecting these three will cause a total of 
only 8 elements to be eliminated from consideration (for each one selected). Following these, 3 
elements may be selected at 24-unit intervals (because these three, and each three following, elim



------------------------------------------------------------------------------------------------

inate a total of 24 elements). The maximum number which can be chosen for set A using this pro
cess before all possible elements have been either selected or eliminated from consideration is 15 
(this may be repeated five times, terminating with 97, 98, and 99). 

The only elements which are left to be selected that satisfy the initial constraints (but not 
the extra one applied originally) will be the ones which have a difference of 3 with one of the ele
ments selected for A. 

Therefore, two elements of A must differ by 3. 

5/4/10. In ΔABC , let D, E, and F be the mid
points of the sides of the triangle, and let P, 
Q, and R be the midpoints of the correspond

ing medians, AD , BE , and CF , respec

tively, as shown in the figure at the right.

Prove that the value of


2 2 2 2 2 2
AQ + AR + BP + BR + CP + CQ


2 2 2

AB + BC + C A

does not depend on the shape of ΔABC and 
find that value. A F B 

C 

DE 

P 
Q 

R 

Solution 1 by Luke Gustafson (10/MN):
ΔABC can be placed on a coordinate sys
tem as shown on the right, with A on the 
origin, B at (4x, 0), and C at (4y, 4z). By the 
midpoint theorem, D = (2x +2y, 2z), 
E = (2y, 2z), F = (2x, 0), P = (x+y, z), Q = 
(2x + y, z), and R = (x+2y, 2z). 

Using the distance formula, 
2AQ2 = (2x+y)2+z2 = 4x2+4xy+ y2+ z

AR2 = (x+2y)2+4z2= x2+4xy+4y2+4z2 

BP2=(3x-y)2+z2=  9x2-6xy+ y2 + z2 

BR2=(3x-2y)2+4z2= 9x2-12xy+4y2+4z2 

CP2=(x-3y)2+9z2= x2-6xy+9y2+9z2 

CQ2=(2x-3y)2+9z2= 4x2-12xy+9y2+9z2. 

Adding these up gives 28(x2-xy+y2+z2). 
Furthermore, 

AB2=16x2 

BC2=16x2-32xy+16y2+16z2 

CA2=16y2+16z2 

A B (4x, 0) 

DE 

F 

P 
Q 

R 

C (4y, 4z) 



Adding these up gi v e s 32(x2-xy+y2+z2). 

2 2 2 2 2 2 2 2
AQ + AR + BP + BR + CP + CQ 28 ( x 

2
– xy + y + z ) 7That mak es ------------------------------------------------------------------------------------------------ = --------------------------------------------------- = --

2 2 2 2 2 8AB + BC + C A 32 ( x 
2

– xy + y + z ) 

Since this construction used an arbitrary triangle, this v alue is independent of the shape of 
ΔABC . 
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