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Gene A. Berg, Editor 

1/2/10. Determine the unique pair of real numbers ( x y) that satisfy the equation, 

(4 x 
2

+ 6 x + 4)(4 y 
2 

– 12 y + 25) = 28 . 

Solution 1 by Robert Kotredes (11/ME): The polynomial 4 x 
2

+ 6 x + 4 can be written as 

7 7
4⎛

⎝ x ---+ 3⎞ 2 
---+ , and therefore has a range of ≥ --- . The polynomial 4 y 

2 
– 12y + 25 can be writ

4⎠ 4 4


7

ten as 4⎝

⎛ x ---– 3⎞ 2 
16+ , and therefore has a range of ≥ 16 . Because --- ⋅ 16 = 28 , the only possi

2⎠ 4 

3 3ble values for each polynomial are their minimums, which occur at x = ---– and y = --- ,
4 2 

3 3⎞ ,respectively. So the unique pair of real numbers ( x y) is ⎝
⎛ ---– , --- .

4 2⎠ 

Solution 2 by Kim Won Jong (12/CA): Let A = (4 x 
2

+ 6 x + 4) , then 

A ⋅ (4y 
2 

– 12y + 25) = 28 

28(4y 
2 

– 12y + 25) = -----
A 

284 y 
2 

– 12 y + 25 – ------ = 0
A 

Since there is a unique pair ( x y) , the discriminant b
2

– 4ac of the quadratic formula must equal, 
zero, or 

28⎞⋅12
2

– 4 4 ⋅ ⎛⎝25 – ------ = 0
A⎠ 

448144 400– + --------- = 0
A 

7
A = --

4 
So, 

7
A = 4 x 

2
+ 6 x + 4 = --

4 



94 x 
2

+ 6 x + --- = 0
4 

– b ± b
2

– 4ac b 3 
x = -------------------------------------- = –------ = ---– , since again, the discriminant is zero.

2a 2a 4 
Substituting A into the original equation, 

7 ---(4 y 
2 

– 12y + 25) = 28
4


4 y 
2 

– 12 y 9+ = 0


b 12 3

y = –------ = ---------- = --

2a 2 4 2⋅ 
Therefore, the unique pair of real numbers ( x y) that satisfy the equation, 

2(4x 
2

+ 6x + 4)(4y – 12y + 25) = 28


3 3⎞
is ⎛ ---– , --- .⎝ 4 2⎠ 

Solution 3 by Robert Klein (12/PA): “Completing the square” within each term we get: 

22 7⎞ 
⎝⎝ 

3⎞ 2 7⎞ ((2 y 3– ) 16+ ) = 28⎛⎛4 x + 6 x + 9---⎞ ---+ 
4⎠ ((4y 

2 
– 12y 9+ ) 16+ ) = ⎛⎛2x ---+ ---+⎝⎝ 4⎠ 2⎠ 4⎠ 

7Substituting a = ⎛
⎝2x ---+ 3⎞ 2 

and b = (2 y 3– )2 
, the equation becomes ⎛⎝a ---+ ⎞ (b 16+ ) = 28 .

2⎠ 4⎠ 

7
Observing a ≥ 0 and b ≥ 0 , we must have a = 0 and b = 0 since --- ⋅ 16 = 28 .

4 

3⎞ 2 
= 0  and b = (2 y 3– )2 

= 0 , the unique pair of real numbers satisfyingSolving a = ⎛
⎝2x ---+ 

2⎠ 
the equation is (-3/4, 3/2). 

Solution 4 by Adam Salem (12/NY): This solution uses calculus. Let f x( )  = 4 x 
2

+ 6 x + 4 and 

( )  = 4 y 
2 

– 12 y + 25 . Thus f x ( )  = 28 . To find the extreme points of both f and g, setg y ( ) ⋅ g y

their derivatives equal to 0. f′( )  = 8  x  6+  and f″( )  =  8 0 , so f(x) has a minimum atx x > 
x = 0.75– . Similarly, g′( )  = 8y 12– and g″( )  =  8 0 , so g(y)has a minimum at y = 1.5 .y y > 

( ) ≥ f ( 0.75– ) = 1.75 and g yThis is equivalent to f x ( ) ≥ g(1.5) = 16 . Multiplying the inequal-

( )g yities yields f x ( ) ≥ 28 . This is notable because 28 is the number from the original equation, 

( ) ⋅ g ywhich means that we are simply trying to find numbers x and y that minimize f x ( )  . Since 

( ) ⋅ g yboth f(x) and g(y) are always positive, it follows that the smallest value of f x ( )  is the prod

( ) ⋅ g yuct of their minimums. Thus the smallest value of f x ( )  is produced when 

, ,( x y) = (–0.75 1.5) 



Editor’s Comment: This problem is based on a similar problem (E: 11418) proposed by Petre 
Bãtrânetu of Galati, Romania, in Issue 7-8/1997 of the Gazeta Mathematicã. 

2/2/10. Prove that there are infinitely many ordered triples of positive integers (a b c) such, ,  
2 2 2 2 2

that the greatest common divisor of a, b, and c is 1, and the sum a 
2
b + b c + c a is the 

square of an integer. 

Solution 1 by Irena Foygel (10/IL): Let x and y be relatively prime positive integers such that 
2 

x ≡ 1 (mod 2). Let a = x 
2

, b = 2y , and c  =  xy  . Because x and y are relatively prime and x is

not divisible by 2, a and b are relatively prime; therefore gcd(a, b, c) = 1.

Now,


2 2 2 2 2 2 4 4 2 2 2 2 4
x xa b + b c + c a = ( )(4 y 

4 ) + (4y )( x y ) + ( x y )( )  
2 2 2 4 2 

= x y (4x 
2 
y + 4y 

4
+ x ) = ( xy( x + 2 y 

2 ))
2 

2 2 2 2 2 2 2 2
Set n = xy  ( x 

2
+ 2y )  and observe a b + b c + c a = n .


Because there are an infinite number of pairs (x, y) meeting the above requirements, there are an

infinite number of triples (a, b, c) meeting the requirements.


Solution 2 by Michael Castleman (12/MA): For relatively prime integers a, b, and c, the sum

2 2 2 2 2 2


a b + b c + c a  is a square of an integer if one of the numbers equals the sum of the other

two. We shall now prove this.


Without loosing the generality of the proof, assume that a + b = c. Replacing a + b for c and sim

plifying, we get:


2 2 2 2 2
+ +a b + b (a b)2

+ (a b) a 

2 2 2 
= a b + (a 

2
+ b 

2 
)(a b)+ 

4 2 2 4 
= a + 2a 

3
b + 3a b + 2ab

3
+ b

= (a 
2

+ ab + b
2)

2 

2
Since a 

2
+ ab + b  is an integer, the result is the square of an integer. Since there are an infinite 

number of ordered triples (a, b, c) such that a, b, and c are relatively prime and a + b = c, and, for 
2 2 2 2 2

all of those pairs, a 
2
b + b c + c a  is an integer, there exist an infinite number of ordered tri

ples which meet the given criteria. 

2 2 2 2 2Solution 3 by Andy Large (11/TN): In order fora 
2
b + b c + c a to be the square of an inte

2
ger, it must be possible to write it in the form x 

2
+ 2xy + y or ( x y)2 

. Conveniently, we have a + 

ab catrinomial with squared first and third terms: ( )2  
and ( )2  

. This means we only need the mid
dle term to be equivalent to 2 times the product of the said squared terms. That is 

2 2 ( )  acb c = 2 ab ( )  = 2a 
2 
bc 



bc 2 
------ = a
2 

bc 
a = -----

2 
a will be an integer under either of the conditions: 

2
(i) b = 2

2n 1 + ⋅ m and c = s 
2 

for m, n, s integers. 

(2
2n  1  +  2 2 ⋅ m )sHere a = ------------------------------------ = 2

n ⋅ ms
2 

(ii) c and b are switched in (i) above. 

2 2 , ,Consider the triple (a b c) = (2
n
ms, 22n 1 + 

m , s ) , where m, n, and s are positive integers. 
When m and s are relatively prime and when s and 2 are relatively prime, then GCD(a, b, c) = 1, 
and this triple meets the requirements above. There are an infinite number of such triples. 

Solution 4 by Jeffrey Palmer (12/NY): Integers a, b, and c have GCD = 1 if two of the members 
are distinct primes.

2 2 2 2 2 2 
a b + b c + c a  is the square of an integer when a 

acsquare can be completed. 
2 2

The a 
2 
c 

2 
and a b  terms are accounted by 

the shaded areas (see diagram at right). ab
If 

2 2
b c = 2cba

2 

2a 
2 

c = -------
b 

If b = 2 and a is an odd prime, then infinitely many tri

ples can be created which meet the requirements: (a b c) = (a, ,  a 
2 ) ., ,  2 

2 2 2 2 2 2Solution 5 by George Lee (11/CA): Suppose a 
2
b + b c + c a = d , and rewrite the equa

2 2 2 2 2 2 2
tion as d

2
– (a + b )c 

2
= a b . With a = 1, this reduces to d – (b2  

1  +  )c = b . 

2
Now let b = 1 to obtain d

2
– 2c = 1 . This is a Pell’s equation, which has infinitely many solu

tions - each corresponding to an ordered triple (1, 1, c). [For a discussion of Pell’s equation see the 
, ,Editor’s comment following Solution 6.] For example, (c d) = (c1, d1 ) = (2 3) satisfies the 

equation. Some ways that successive solutions can be generated are by: 
(i) using the recursive relations cn  1  +  = 3c + 2d  and dn  1  +  = 4c + 3dn  ;n n n 

(ii) using the single recursive relationc – c  where c1 = 2 and c2 = 12; orn  2  +  = 6cn  1  +  n  

+ –(iii) using the equation cn = ((3 2 2)
n 

– (3 2 2)
n 
) ⁄ ( 2) . 



For this solution, we will show that the first method works by induction: 
2

dn 1 + – 2cn 
2 

1 + = (4c + 3d )2
– 2 3c + 2d )2(n n n n 

2 
= 16c

2 
+ 24c d + 9d

2 
– 18c – 24c d – 8d

2 
n n n n n n n n 

2 
= d – 2c

2 
n n 

= 1 . 

Since cn+1 and dn+1 are larger than cn and dn, we can generate infinitely many solutions (c, d) = 
(cn, dn). Also, 1, 1, and cn are relatively prime. Thus we can generate infinitely many correspond
ing solutions (1, 1, c). 

Solution 6 by David Fithian (11/OR): We are to show that infinitely many positive integer sets 
2 2 2 2 2 2

(a, b, c, n) satisfy the equationa 
2
b + b c + c a = n with gcd(a, b, c) = 1. Without loss of 

generalization, let c = 1. This automatically makes gcd(a, b, c) = 1, regardless of the values of a 
2 2 2 2

and b. We are left with a 
2
b + a + b = n with a b n  ∈  N  . Now, set b = 1, so that , ,  

2
2a  

2
1  +  =  n  

2  
. Rearranging, we see that n – 2a 

2 
= 1 ; since this is a Fermat-Pell equation of the 

2
form x 

2
– dy = 1 , and since d = 2 is prime, there are infinitely many solution pairs (a, n), and 

thus the equation has infinitely many positive integral solutions with gcd(a, b, c) equal to 1. 

These solutions would be (a, b, c, n) = (r, 1, 1, s), where s/r is a certain fractional convergent of 

2 . In particular, the first solution pairs (a, n) are (2, 3), (12, 17), (70, 99), (408, 577),... . It can be 

verified that n/a indeed converges to 2 . 

Editor’s Comments: This problem is due to Suresh T. Thaker of Bombay, India. We are grateful 
for his contribution.  A brief discussion of Pell’s equations is available in the solutions to Round 
1 of Year 10. Mr. Lee (Solution 5 above) presents two more methods to generate solutions using 
Pell’s equations which we have not included. Pell’s equations are used in Solution 6 as well. In the 
following note, Erin Schram continues the discussion. 

Solution by Pell’s Equation, summary by Erin J. Schram, longtime grader. 

Several test-takers solved problem 2 by Pell’s equation. Gene Berg described Pell’s equation in 

the solutions to round 1, but he did not expect Pell’s equation to be of any use in this round. The 

creativity of the students who take the USAMTS is surprising and refreshing. 

Pell’s equation is the quadratic Diophantine equation of the form 

2 2 
x – Dy = N 



where D and N are integer constants and x and y are integer unknowns. We start with the equation 

2 2 2 2 2 2 2 
a b + a c + b c = x 

and we pick arbitrary integers for a and b. This changes the equation to a Pell’s equation in the 

variables x and c. Although setting a and b to arbitrary values won’t give every solution to 
2 2 2 2 2 2 2 

a b + a c + b c = x , the problem asked for only an infinite family of solutions, and the 

solutions to the Pell’s equation are an infinite family. Besides, with a and b held constant, we can 

pick them so that their greatest common divisor is 1, forcing the greatest common divisor of a, b, 

and c to be 1. 

For example, the most common choice was a = 1 and b = 1. Then the equation simplifies to 

2 2 
x – 2c =  1,  

which is a Pell’s equation.  This equation is almost identical to the equation from Gene Berg’s 
2

discussion, x 
2

– 2y = ±1 . Gene Berg’s use of continued fractions to solve that Pell’s equation 
2

can be adapted to solve problem 2, since every other term from the solutions to x 
2

– 2y = ±1 
2

satisfies x 
2

– 2y = 1 . 

For variety, I will discuss the recursive solution to the Pell’s equation that results from setting a = 
2

1 and b = 2, the second most common choice. This gives x 
2

– 5c = 4 . 

2
Suppose we have the Pell’s equation x 

2
– Dy = N and one solution to it, ( x0, y0) . Further

2 ,more, suppose (u v) is a solution to u 
2

– Dv = 1 : note that I replaced the integer N with the 
2

integer 1 in that equation. Then (ux0 + vDy0, vx0 + uy0 ) will be a solution to x 
2

– Dy = N . 

2 , ,We have x 
2

– 5c = 4  and some trial and error gives us ( x c) = (3 1)  as one solution. For a 

solution to u2 – Dv
2 

= 1 , let’s be lazy and cut our solution to the previous equation in half, 

, ,which gives (u v) = (1.5 0.5 ) . Even though the recursion will not be built from integers, it is 

, ,possible that its results will still be integers. The result is a solution ( x c) = (3 1) and a recur

sive relation: 

( , = (1.5 xi + 2.5ci, 0.5 xi + 1.5ci )xi  1  +  ci  1  +  ) 

Hence, we can rearrange the recursive relation to the following: 



  

   

  
,( x0, c0 ) = (3 1) 

, ,( x1, c1 ) = (1.5 × 3 + 2.5 × 1 0.5 × 3 + 1.5 × 1) = (7 3) 

, ,( x2, c2 ) = (1.5 × 7 + 2.5 × 3 0.5 × 7 + 1.5 × 3) = (18 8 ) 

, ,( x3, c3 ) = (1.5 × 18 + 2.5 × 8 0.5 × 18 + 1.5 × 8) = (47 21 ) 

, ,( x4, c4 ) = (1.5 × 47 + 2.5 × 21 0.5 × 47 + 1.5 × 21) = (123 55 ) 

We also have the following relations:. 

ci = 0.5 xi 1 – + 1.5ci 1 – , so = 2ci –xi 1 – 3ci  1–

(xi = 1.5 xi 1 – + 2.5ci 1 – ,  so xi = 1.5 2ci – ) + 2.5ci 1 – = 3ci –3ci 1 – 2ci 1–

(ci  1  +  = 0.5 xi + 1.5ci ,  so ci 1 + = 0.5 3ci – ) + 1.5ci = 3ci –2ci 1 – ci  1–

The recursive relation ci  1  +  = 3ci  –  ci  1  –   tells us the solutions will all be integers. Some test-tak-

ers noticed that the values for c, which are 1, 3, 8, 21, 55, 144, 377,..., are every other term from 

the Fibonacci sequence. The Fibonacci sequence, being the simplest nontrivial recursive 

sequence, appears a lot in recursive relations. 

3/2/10. Nine cards can be numbered using positive half-integers (1/2, 1, 3/2, 2, 5/2,...) so that the 
sum of the numbers on a randomly chosen pair of cards gives an integer from 2 to 12 with the 
same frequency of occurrence as rolling that sum on two standard dice. What are the numbers 
on the nine cards and how often does each number appear on the cards? 

Solution 1 by Megan Guichard (11/WA): With nine cards, there are 9C2 = 36 possible ways to 

choose two cards. As it happens, there are also 6 6 = 36  possible outcomes when two dice are ⋅ 
rolled, with the following frequencies of occurrence: 

Sum  2 3 4 5 6 7 8 9 10 11 12  

Frequency 1 2 3 4 5 6 5 4 3 2 1 

Therefore, there must be exactly one pair of cards with a sum of 2, exactly two pairs of cards with 
a sum of 3, and so on. 

Since all possible sums must be integers, the cards must be numbered either with all integers or 
with all odd integer multiples of 1/2. Since half-integers are specifically mentioned, it seems a 
good assumption that all cards are numbered with odd integer multiples of 1/2 (at least until this 



------- ------- --- ------

assumption is proven either true or false). 

Operating under this assumption, there is only one way to get a sum of 2: 1/2 + 3/2. Thus there 
must be exactly one card numbered 1/2 and exactly one numbered 3/2. Then there must be two 
pairs of cards with sum 3; this can be accomplished by either 1/2 + 5/2 or 3/2 + 3/2. However, we 
already know there is only one card numbered 3/2, so there must be two ways to draw 1/2 + 5/2. 
Only one card is numbered 1/2 so there must be two cards numbered 5/2. 

With the four cards we now have (1/2, 3/2, 5/2, 5/2) there are only two ways to draw a pair of 
cards with sum 4: 3/2 + 5/2 and 3/2 + 5/2 (there are two cards numbered 5/2). Therefore we need 
to add one more card that will create a sum of 4 when paired with an existing card. However the 
new card must be greater than 5/2, because there are exactly the right number of cards less than or 
equal to 5/2 already; thus the new card must be 7/2, which, when paired with 1/2, yields the third 
way to get a sum of 4. 

Continuing this line of reasoning shows that the remaining four cards must be numbered 9/2, 9/2, 
11/2, and 13/2, meaning that the complete set of none cards is numbered as follows 

(1/2, 3/2, 5/2, 5/2, 7/2, 9/2, 9/2, 11/2, 13/2) 

With these cards, exactly one pair results in a sum of 2, exactly two pairings result in a sum of 3, 
three pairs yield a sum of 4, and so on, with each sum having the same frequency as on a pair of 6
sided dice. 

Editor’s comments: Erin Schram of the National Security Agency contributed this clever prob
lem. 

4/2/10. As shown on the figure, square PQRS is 
C

inscribed in right triangle ABC, whose right angle is 
at C, so that S and P are on sides BC and CA, respec- P S

tively, while Q and R are on side AB. Prove that

AB ≥ 3QR and determine when equality occurs. 

Solution 1 by Suzanne Armstrong (11/MO): A Q R B 

(i) Since ∠A ∠CPS ∠RSB≅ ≅ 
∠B ∠CSP ∠QPA≅ ≅ 

and AQP ∠C ∠SRB≅ ≅∠ = 90° 
then ΔABC is similar to .ΔSRB

(ii) Let AQ = 1 and let x = PQ = PS = QR = .RS 
(iii) So

AQ- = PQ- and hence
1 = x - and therefore BR = .x 

2 

RS BR x BR 

(iv) AB = BR QR AQ+ + = x 
2 

x 1+ +  



(v) Now to prove that AB ≥ 3QR , we must show x 
2 

1+ +  ≥  3x  .x 
2

This is equivalent to x 
2

– 2 x 1+ ≥ 0 or ( x 1– ) ≥ 0 which is clear 
and is further emphasized by its graph (at right). 
(vi) As our last step, we determine when equality occurs. When

QR = 1 = AQ , then AB = 3QR = 3 ; also, 

when AB = 3QR = 3 , all of the triangles are isosceles 

45°, 45°, 90° . 

Thus, AB ≥ 3QR with equality when AQ = QR . 

Solution 2 by Xuejing Chen (12/OK): Observe that
C

∠APQ = ∠SBR and ∠PAQ = ∠BSC , so ΔAPQ is 

a

P Ssimilar to ΔSRB. 

a bThus --- = --- and a 
2

= bc . 
c a c BA b Q R 

2
†Since ( b – c) ≥ 0 , it follows that b c ≥ 2 bc .+ 

So b c  ≥  2a  , and b c a  ≥  3a  .+ + +  

Thus AB ≥ 3QR . 

Now, if b = c, then b + c = 2a so we have equality. This occurs ifΔCAB is isosceles. 

Solution 3 by Daniel Moraseski (11/FL): 

AQ AQ AC RB RB BCBy similarity we have -------- = -------- = -------- and -------- = ------- = -------
QR PQ BC QR RS AC 

s t+
The Arithmetic Mean - Geometric Mean inequality states ---------- ≥ st for nonnegative numbers s

2 
and t. [See † in Solution 2 above for proof.] 

AC BC⎞ + 
AC BC⎞ 

So AB = QR + AQ + RB = QR⎛1 + -------- + --------⎠ ≥ QR⎜
⎛ 
1 2  -------- ⋅ --------⎟ = 3QR⎝ BC AC ⎝ BC AC⎠ 

AC BCEquality is satisfied when -------- = -------- because this is the equality condition for the AM-GM. This 
BC AC 

means AC = BC and it is an isosceles right triangle. 

Editor’s Comments: We are most grateful to Professor Hiroshi Okumura of the Maebashi Insti



tute of Technology for this excellent problem. Professor Okumura is in charge of the Japanese 
counterpart of the USAMTS. 

1Many solutions used the inequality n ---+ ≥ 2 (for positive number n) in one form or another. 
n 

2
Since (n 1– )2 ≥ 0 we can write n – 2n 1+ ≥ 0 , so n 

2 
1+ ≥ 2n and n ---+ 1 ≥ 2 . If this fact was 

n 
used in a solution, full credit for the solution required proof of this fact. 

5/2/10. In the figure on the right, ABCD is a 
convex quadrilateral, K, L, M, and N are the D

L N
P 

Q 

R
S

K C 

midpoints of its sides, and PQRS is the 
quadrilateral formed by the intersections of 
AK, BL, CM, and DN. Determine the area 
of quadrilateral PQRS if the area of quadri
lateral ABCD is 3000, and the areas of 
quadrilaterals AMQP and CKSR are 513 
and 388, respectively. 

B 
Notation: [P1P2...Pv] denotes the area of poly
gon P1P2...Pv. 
Connect AC. Because M, K are midpoints of 
AB, CD respectively, then [ACK] = [ACD]/2, 
and [CAM] = [CAB]/2. 

Solution 1 by Mary Tian (10/TX): A	 M 

Hence 
[AMCK] = [ACK] + [CAM] = ( [ACD]/2 ) + ( [CAB]/2 ) 

= [ABCD]/2 
Thus 

[PQRS]	 = [AMCK] - [AMQP] - [CKSR]

= ( [ABCD]/2 ) - [AMQP] - [CKSR]

= (3000/2) - 513 - 388

= 599.


So area of quadrilateral PQRS is 599. 

Editor’s comment: We are thankful to Professor Gregory Galperin of Eastern Illinois University 
for proposing an earlier version of this problem. His many contributions are most appreciated. 
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