

USA Mathematical Talent Search
 Round 2 Grading Criteria

Year 21 - Academic Year 2009-2010
 WWW.usamts.org

IMPORTANT NOTE: On all problems, the graders have the discretion to deduct 1 additional point for a solution that is poorly written.

Problem 1/2/21:

1 point for part (a): must be correct with correct explanation. 1 point may also be earned if part (a) is skipped but part (b) is done correctly and the student notes explicitly that part (a) follows from part (b).

4 points for part (b): 1 point for noticing that using 1 is a key step, 2 points for a plausible approach but with a major flaw, 3 points for essentially the correct approach but with a minor flaw, 4 points complete and correct.

Many students did it the opposite way as the solution above: they first multiplied and then repeatedly added 1 . This is valid but slightly more difficult to make rigorous.

Any flaw in reasoning, rather than sloppiness in rigor, loses at least 2 points. Asserting, without proof, that there exists a smallest solution to $a+n \leq b n$ loses 1 point.

Problem 2/2/21:

The correct answer with a reasonable explanation will almost always score 5. This includes a computer program (with explanation) that produces the correct answer.

Give $0 / 5$ for any solution with an answer greater than $2^{16}=65536$.
Give $1 / 5$ for a reasonable start. Also $1 / 5$ for a solution with no explanation or a computer solution with no justification.
Give $2 / 5$ for some valid progress. Also $2 / 5$ is the most a solution with a highly unreasonable answer can receive (e.g. an answer much less or much greater than 2926).
Give $3 / 5$ for a plausible method with a significant error.
Give $4 / 5$ for a correct method with a minor error (e.g. overlooking a case or incorrect arithmetic).
Problem 3/2/21:
Essentially correct solutions should receive 3 , 4, or 5 . Give 4 if there is a minor flaw or the argument is poorly written. Give 3 out of 5 if the idea of the solution is essentially correct but there is a significant flaw. The inductive argument need not be explicit: the level of detail shown in the published solution is sufficient.

Essentially incorrect solutions should receive 0 , 1, or 2. Give 2 for a solution that makes some nontrivial progress (for example, showing that $7^{2010} \mid\left(a^{2}+b^{2}\right)$). Give 1 for solutions that take a reasonable approach.

Any theorems cited must be cited by name or reference and include a complete statement of the theorem.

USA Mathematical Talent Search
 Round 2 Grading Criteria

Year 21 - Academic Year 2009-2010
WWW.usamts.org

Problem 4/2/21:

2 points for part (a). We do not require the most efficient solution-any valid path should receive full credit.

3 points for part (b). Award $1 / 3$ for demonstrating a correct idea (e.g. that Pythagorean triples are significant and/or that only even denominators can be attained); award $2 / 3$ for an essentially correct argument with a minor flaw; $3 / 3$ for correct and complete.

Problem 5/2/21:

No points for a solution that claims that $P Q=2.5$ is the maximum.
Many students used calculus. A student who did the calculus via computer but did not prove that it worked gets at most $3 / 5$. A student who showed the calculus but then used a decimal approximation at the end to establish the inequality gets at most $4 / 5$. A student who used calculus incorrectly gets at most $1 / 5$.

Essentially correct solutions should get 3,4 , or 5: $4 / 5$ for minor flaws and $3 / 5$ for an essentially correct argument but with major flaws. Essentially incorrect solutions should get 0 , 1 , or 2 : $1 / 5$ must make some nontrivial progress and $2 / 5$ for significant progress towards the correct solution.

