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Important information:

1. You must show your work and prove your answers on all problems. If you
just send a numerical answer with no proof for a problem other than Problem 1, you
will get no more than 1 point.

2. Put your name, username, and USAMTS ID# on every page you submit.

3. No single page should contain solutions to more than one problem. Every solution you
submit should begin on a new page.

4. Submit your solutions by November 27, 2023 via one (and only one!) of the methods
below:

(a) Web: Log on to www.usamts.org to upload a PDF file containing your solutions.
(No other file type will be accepted.)
Deadline: 10 PM Eastern / 7 PM Pacific on November 27, 2023.

(b) Mail: USAMTS
55 Exchange Place
Suite 603
New York, NY 10005
Deadline: Solutions must be postmarked on or before November 27,
2023.

5. Confirm that your email address in your USAMTS Profile is correct. You can do so
by logging on to www.usamts.org and visiting the “My USAMTS” pages.

6. Round 2 results will be posted at www.usamts.org when available. To see your results,
log on to the USAMTS website, then go to “My USAMTS”. You will also receive an
email when your scores and comments are available (provided that you did item #5
above).

These are only part of the complete rules.
Please read the entire rules at www.usamts.org.
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Each problem is worth 5 points.

1/2/35. In the diagram below, fill the 12 circles with numbers from the following bank so that
each number is used once. Two circles connected by a single line must contain relatively
prime numbers. Two circles connected by a double line must contain numbers that are not
relatively prime.

Bank: 20, 21, 22, 23, 24, 25, 27, 28, 30, 32, 33, 35

There is a unique solution, but you do not need to prove that your answer is the only
one possible. You merely need to find an answer that satisfies the conditions of the problem.
(Note: In any other USAMTS problem, you need to provide a full proof. Only in this
problem is an answer without justification acceptable.)

2/2/35. Malmer Pebane’s apartment uses a six-digit access code, with leading zeros allowed.
He noticed that his fingers leave smudges that reveal which digits were pressed. He decided
to change his access code to provide the largest number of possible combinations for a burglar
to try when the digits are known. For each number of distinct digits that could be used in
the access code, calculate the number of possible combinations when the digits are known
but their order and frequency are not known. For example, if there are smudges on 3 and
9, two possible codes are 393939 and 993999. Which number of distinct digits in the access
code offers the most combinations?

(The problems are continued on the next page.)
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3/2/35. We say that three numbers are balanced if either all three numbers are the same, or
they are all different. A grid consisting of hexagons is presented in Figure 1. Each hexagon
is filled with the number 1, 2, or 3, so that for any three hexagons that are mutually adjacent
and oriented with two hexagons on the bottom and one hexagon on the top (as in Figure
3), the three numbers in the hexagons are balanced. Prove that when the grid is filled com-
pletely, the three numbers in the three shaded hexagons are balanced.

(An example of a partially filled-in grid is shown in Figure 2. There are other ways of
filling in the grid.)

Figure 1

2 1 1 3 2
3 1 2 1
2 3 3
1 3
2

Figure 2 Figure 3

4/2/35. The incircle of triangle ABC with AB ̸= AC has center I and is tangent to BC,CA,
and AB at D,E, and F respectively. The circumcircle of triangle ADI intersects AB and
AC again at X and Y. Prove that EF bisects XY.

5/2/35. Let m and n be positive integers. Let S be the set of all points (x, y) with integer
coordinates such that 1 ≤ x, y ≤ m+ n− 1 and m+ 1 ≤ x+ y ≤ 2m+ n− 1. Let L be the
set of the 3m+3n− 3 lines parallel to one of x = 0, y = 0, or x+ y = 0 and passing through
at least one point in S. For which pairs (m,n) does there exist a subset T of S such that
every line in L intersects an odd number of elements of T?
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