USA Mathematical Talent Search

PROBLEMS

Round 2-Year 13-Academic Year 2001-2002

$\mathbf{1 / 2 / 1 3}$. How many positive five-digit integers are there consisting of the digits $1,2,3,4,5,6,7$, 8,9 , in which one digit appears once and two digits appear twice? For example, 41174 is one such number, while 75355 is not.
$\mathbf{2 / 2} / \mathbf{1 3}$. Determine, with proof, the positive integer whose square is exactly equal to the number

$$
1+\sum_{i=1}^{2001}(4 i-2)^{3}
$$

[A computer solution will be worth at most 1 point.]
$\mathbf{3 / 2} / 13$. Factor the expression

$$
30\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+68 a b-75 a c-156 a d-61 b c-100 b d+87 c d
$$

4/2/13. Let $X=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)$ be a 9 -long vector of integers. Determine X if the following seven vectors were all obtained from X by deleting three of its components:

$$
\begin{gathered}
Y_{1}=(0,0,0,1,0,1), Y_{2}=(0,0,1,1,1,0), Y_{3}=(0,1,0,1,0,1), Y_{4}=(1,0,0,0,1,1), \\
Y_{5}=(1,0,1,1,1,1), Y_{6}=(1,1,1,1,0,1), Y_{7}=(1,1,0,1,1,0) .
\end{gathered}
$$

$\mathbf{5 / 2 / 1 3}$. Let R and S be points on the sides $\overline{B C}$ and $\overline{A C}$, respectively, of $\triangle A B C$, and let P be the intersection of $\overline{A R}$ and $\overline{B S}$. Determine the area of $\triangle A B C$ if the areas of $\triangle A P S, \triangle A P B$, and $\triangle B P R$ are 5, 6, and 7, respectively.

Complete, well-written solutions to at least two of the problems above, accompanied by a Cover Sheet, should be sent to the address listed on the USAMTS web site
http://www.nsa.gov/programs/mepp/usamts.html
and postmarked no later than 25 November 2001. Each participant is expected to develop solutions without help from others.

