U S A Mathematical Talent Search

PROBLEMS

Round 4 - Year 10 - Academic Year 1998-99

$\mathbf{1 / 4 / 1 0}$. Exhibit a 13-digit integer N that is an integer multiple of 2^{13} and whose digits consist of only 8 s and 9 s .
$\mathbf{2 / 4} / \mathbf{1 0}$. For a nonzero integer i, the exponent of 2 in the prime factorization of i is called $\operatorname{ord}_{2}(i)$. For example, $\operatorname{ord}_{2}(9)=0$ since 9 is odd, and $\operatorname{ord}_{2}(28)=2$ since $28=2^{2} \times 7$. The numbers $3^{\mathrm{n}}-1$ for $n=1,2,3, \ldots$ are all even, so $\operatorname{ord}_{2}\left(3^{\mathrm{n}}-1\right)>0$ for $n>0$.
a) For which positive integers n is $\operatorname{ord}_{2}\left(3^{n}-1\right)=1$?
b) For which positive integers n is $\operatorname{ord}_{2}\left(3^{\mathrm{n}}-1\right)=2$?
c) For which positive integers n is $\operatorname{ord}_{2}\left(3^{n}-1\right)=3$?

Prove your answers.
3/4/10. Let f be a polynomial of degree 98 , such that $f(k)=\frac{1}{k}$ for $k=1,2,3, \ldots, 99$. Determine $f(100)$.

4/4/10. Let A consist of 16 elements of the set $\{1,2,3 \ldots, 106\}$, so that no two elements of A differ by $6,9,12,15,18$, or 21 . Prove that two elements of A must differ by 3 .
$\mathbf{5 / 4 / 1 0}$. In $\triangle A B C$, let D, E, and F be the midpoints of the sides of the triangle, and let P, Q, and R be the midpoints of the corresponding medians, $\overline{A D}, \overline{B E}$, and $\overline{C F}$, respectively, as shown in the figure at the right. Prove that the value of

$$
\frac{A Q^{2}+A R^{2}+B P^{2}+B R^{2}+C P^{2}+C Q^{2}}{A B^{2}+B C^{2}+C A^{2}}
$$

does not depend on the shape of $\triangle A B C$ and find that value.

$* * * * * * * * * * * * * * * * *$
Complete, well-written solutions to at least two of the problems above, accompanied by a completed Cover Sheet, should be sent to the following address and postmarked no later than
March 13, 1999. Each participant is expected to develop solutions without help from others.
USA Mathematical Talent Search
COMAP Inc., Suite 210
57 Bedford Street
Lexington, MA 02173

