U S A Mathematical Talent Search

PROBLEMS

Round 3 - Year 10 - Academic Year 1998-99

$\mathbf{1 / 3 / 1 0}$. Determine the leftmost three digits of the number

$$
1^{1}+2^{2}+3^{3}+\ldots+999^{999}+1000^{1000}
$$

$\mathbf{2 / 3} / \mathbf{1 0}$. There are infinitely many ordered pairs (m, n) of positive integers for which the sum

$$
m+(m+1)+(m+2)+\ldots+(n-1)+n
$$

is equal to the product $m n$. The four pairs with the smallest values of m are $(1,1),(3,6)$, $(15,35)$, and $(85,204)$. Find three more (m, n) pairs.
$\mathbf{3 / 3} / \mathbf{1 0}$. The integers from 1 to 9 can be arranged into a 3×3 array (as shown on the right) so that the sum of the numbers in every row, column, and diagonal is a multiple of 9 .
(a.) Prove that the number in the center of the array must be a multiple of 3 .

A	B	C
D	E	F
G	H	I

(b.) Give an example of such an array with 6 in the center.

4/3/10. Prove that if $0<x<\pi / 2$, then $\sec ^{6} x+\csc ^{6} x+\left(\sec ^{6} x\right)\left(\csc ^{6} x\right) \geq 80$.
$5 / 3 / 10$. In the figure on the right, O is the center of the circle, $O K$ and $O A$ are perpendicular to one another, M is the midpoint of $O K$, $B N$ is parallel to $O K$, and $\angle A M N=\angle N M O$. Determine the measure of $\angle A B N$ in degrees.

Complete, well-written solutions to at least two of the problems above, accompanied by a completed Cover Sheet, should be sent to the following address and postmarked no later than January 9,1999 . Each participant is expected to develop solutions without help from others.

USA Mathematical Talent Search
COMAP Inc., Suite 210
57 Bedford Street
Lexington, MA 02173

